src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp

Fri, 11 Mar 2011 16:35:18 +0100

author
jwilhelm
date
Fri, 11 Mar 2011 16:35:18 +0100
changeset 2648
1fb790245268
parent 2314
f95d63e2154a
child 4037
da91efe96a93
permissions
-rw-r--r--

6820066: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Summary: Check that -XX:ParGCArrayScanChunk has a value larger than zero.
Reviewed-by: johnc, jmasa, ysr

duke@435 1 /*
trims@1907 2 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 29 #include "gc_implementation/shared/gcStats.hpp"
stefank@2314 30 #include "gc_implementation/shared/gcUtil.hpp"
stefank@2314 31 #include "gc_interface/gcCause.hpp"
stefank@2314 32
duke@435 33 // This class keeps statistical information and computes the
duke@435 34 // optimal free space for both the young and old generation
duke@435 35 // based on current application characteristics (based on gc cost
duke@435 36 // and application footprint).
duke@435 37 //
duke@435 38 // It also computes an optimal tenuring threshold between the young
duke@435 39 // and old generations, so as to equalize the cost of collections
duke@435 40 // of those generations, as well as optimial survivor space sizes
duke@435 41 // for the young generation.
duke@435 42 //
duke@435 43 // While this class is specifically intended for a generational system
duke@435 44 // consisting of a young gen (containing an Eden and two semi-spaces)
duke@435 45 // and a tenured gen, as well as a perm gen for reflective data, it
duke@435 46 // makes NO references to specific generations.
duke@435 47 //
duke@435 48 // 05/02/2003 Update
duke@435 49 // The 1.5 policy makes use of data gathered for the costs of GC on
duke@435 50 // specific generations. That data does reference specific
duke@435 51 // generation. Also diagnostics specific to generations have
duke@435 52 // been added.
duke@435 53
duke@435 54 // Forward decls
duke@435 55 class elapsedTimer;
jmasa@1822 56 class GenerationSizer;
duke@435 57
duke@435 58 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
duke@435 59 friend class PSGCAdaptivePolicyCounters;
duke@435 60 private:
duke@435 61 // These values are used to record decisions made during the
duke@435 62 // policy. For example, if the young generation was decreased
duke@435 63 // to decrease the GC cost of minor collections the value
duke@435 64 // decrease_young_gen_for_throughput_true is used.
duke@435 65
duke@435 66 // Last calculated sizes, in bytes, and aligned
duke@435 67 // NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's
duke@435 68
duke@435 69 // Time statistics
duke@435 70 AdaptivePaddedAverage* _avg_major_pause;
duke@435 71
duke@435 72 // Footprint statistics
duke@435 73 AdaptiveWeightedAverage* _avg_base_footprint;
duke@435 74
duke@435 75 // Statistical data gathered for GC
duke@435 76 GCStats _gc_stats;
duke@435 77
duke@435 78 size_t _survivor_size_limit; // Limit in bytes of survivor size
duke@435 79 const double _collection_cost_margin_fraction;
duke@435 80
duke@435 81 // Variable for estimating the major and minor pause times.
duke@435 82 // These variables represent linear least-squares fits of
duke@435 83 // the data.
duke@435 84 // major pause time vs. old gen size
duke@435 85 LinearLeastSquareFit* _major_pause_old_estimator;
duke@435 86 // major pause time vs. young gen size
duke@435 87 LinearLeastSquareFit* _major_pause_young_estimator;
duke@435 88
duke@435 89
duke@435 90 // These record the most recent collection times. They
duke@435 91 // are available as an alternative to using the averages
duke@435 92 // for making ergonomic decisions.
duke@435 93 double _latest_major_mutator_interval_seconds;
duke@435 94
duke@435 95 const size_t _intra_generation_alignment; // alignment for eden, survivors
duke@435 96
duke@435 97 const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause
duke@435 98
duke@435 99 // The amount of live data in the heap at the last full GC, used
duke@435 100 // as a baseline to help us determine when we need to perform the
duke@435 101 // next full GC.
duke@435 102 size_t _live_at_last_full_gc;
duke@435 103
duke@435 104 // decrease/increase the old generation for minor pause time
duke@435 105 int _change_old_gen_for_min_pauses;
duke@435 106
duke@435 107 // increase/decrease the young generation for major pause time
duke@435 108 int _change_young_gen_for_maj_pauses;
duke@435 109
duke@435 110
duke@435 111 // Flag indicating that the adaptive policy is ready to use
duke@435 112 bool _old_gen_policy_is_ready;
duke@435 113
duke@435 114 // Changing the generation sizing depends on the data that is
duke@435 115 // gathered about the effects of changes on the pause times and
duke@435 116 // throughput. These variable count the number of data points
duke@435 117 // gathered. The policy may use these counters as a threshhold
duke@435 118 // for reliable data.
duke@435 119 julong _young_gen_change_for_major_pause_count;
duke@435 120
duke@435 121 // To facilitate faster growth at start up, supplement the normal
duke@435 122 // growth percentage for the young gen eden and the
duke@435 123 // old gen space for promotion with these value which decay
duke@435 124 // with increasing collections.
duke@435 125 uint _young_gen_size_increment_supplement;
duke@435 126 uint _old_gen_size_increment_supplement;
duke@435 127
duke@435 128 // The number of bytes absorbed from eden into the old gen by moving the
duke@435 129 // boundary over live data.
duke@435 130 size_t _bytes_absorbed_from_eden;
duke@435 131
duke@435 132 private:
duke@435 133
duke@435 134 // Accessors
duke@435 135 AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
duke@435 136 double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
duke@435 137
duke@435 138 // Change the young generation size to achieve a minor GC pause time goal
duke@435 139 void adjust_for_minor_pause_time(bool is_full_gc,
duke@435 140 size_t* desired_promo_size_ptr,
duke@435 141 size_t* desired_eden_size_ptr);
duke@435 142 // Change the generation sizes to achieve a GC pause time goal
duke@435 143 // Returned sizes are not necessarily aligned.
duke@435 144 void adjust_for_pause_time(bool is_full_gc,
duke@435 145 size_t* desired_promo_size_ptr,
duke@435 146 size_t* desired_eden_size_ptr);
duke@435 147 // Change the generation sizes to achieve an application throughput goal
duke@435 148 // Returned sizes are not necessarily aligned.
duke@435 149 void adjust_for_throughput(bool is_full_gc,
duke@435 150 size_t* desired_promo_size_ptr,
duke@435 151 size_t* desired_eden_size_ptr);
duke@435 152 // Change the generation sizes to achieve minimum footprint
duke@435 153 // Returned sizes are not aligned.
duke@435 154 size_t adjust_promo_for_footprint(size_t desired_promo_size,
duke@435 155 size_t desired_total);
duke@435 156 size_t adjust_eden_for_footprint(size_t desired_promo_size,
duke@435 157 size_t desired_total);
duke@435 158
duke@435 159 // Size in bytes for an increment or decrement of eden.
duke@435 160 virtual size_t eden_increment(size_t cur_eden, uint percent_change);
duke@435 161 virtual size_t eden_decrement(size_t cur_eden);
duke@435 162 size_t eden_decrement_aligned_down(size_t cur_eden);
duke@435 163 size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
duke@435 164
duke@435 165 // Size in bytes for an increment or decrement of the promotion area
duke@435 166 virtual size_t promo_increment(size_t cur_promo, uint percent_change);
duke@435 167 virtual size_t promo_decrement(size_t cur_promo);
duke@435 168 size_t promo_decrement_aligned_down(size_t cur_promo);
duke@435 169 size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
duke@435 170
duke@435 171 // Decay the supplemental growth additive.
duke@435 172 void decay_supplemental_growth(bool is_full_gc);
duke@435 173
duke@435 174 // Returns a change that has been scaled down. Result
duke@435 175 // is not aligned. (If useful, move to some shared
duke@435 176 // location.)
duke@435 177 size_t scale_down(size_t change, double part, double total);
duke@435 178
duke@435 179 protected:
duke@435 180 // Time accessors
duke@435 181
duke@435 182 // Footprint accessors
duke@435 183 size_t live_space() const {
duke@435 184 return (size_t)(avg_base_footprint()->average() +
duke@435 185 avg_young_live()->average() +
duke@435 186 avg_old_live()->average());
duke@435 187 }
duke@435 188 size_t free_space() const {
duke@435 189 return _eden_size + _promo_size;
duke@435 190 }
duke@435 191
duke@435 192 void set_promo_size(size_t new_size) {
duke@435 193 _promo_size = new_size;
duke@435 194 }
duke@435 195 void set_survivor_size(size_t new_size) {
duke@435 196 _survivor_size = new_size;
duke@435 197 }
duke@435 198
duke@435 199 // Update estimators
duke@435 200 void update_minor_pause_old_estimator(double minor_pause_in_ms);
duke@435 201
duke@435 202 virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
duke@435 203
duke@435 204 public:
duke@435 205 // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
duke@435 206 size_t eden_increment_aligned_up(size_t cur_eden);
duke@435 207 size_t eden_increment_aligned_down(size_t cur_eden);
duke@435 208 size_t promo_increment_aligned_up(size_t cur_promo);
duke@435 209 size_t promo_increment_aligned_down(size_t cur_promo);
duke@435 210
duke@435 211 virtual size_t eden_increment(size_t cur_eden);
duke@435 212 virtual size_t promo_increment(size_t cur_promo);
duke@435 213
duke@435 214 // Accessors for use by performance counters
duke@435 215 AdaptivePaddedNoZeroDevAverage* avg_promoted() const {
duke@435 216 return _gc_stats.avg_promoted();
duke@435 217 }
duke@435 218 AdaptiveWeightedAverage* avg_base_footprint() const {
duke@435 219 return _avg_base_footprint;
duke@435 220 }
duke@435 221
duke@435 222 // Input arguments are initial free space sizes for young and old
duke@435 223 // generations, the initial survivor space size, the
duke@435 224 // alignment values and the pause & throughput goals.
duke@435 225 //
duke@435 226 // NEEDS_CLEANUP this is a singleton object
duke@435 227 PSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 228 size_t init_promo_size,
duke@435 229 size_t init_survivor_size,
duke@435 230 size_t intra_generation_alignment,
duke@435 231 double gc_pause_goal_sec,
duke@435 232 double gc_minor_pause_goal_sec,
duke@435 233 uint gc_time_ratio);
duke@435 234
duke@435 235 // Methods indicating events of interest to the adaptive size policy,
duke@435 236 // called by GC algorithms. It is the responsibility of users of this
duke@435 237 // policy to call these methods at the correct times!
duke@435 238 void major_collection_begin();
duke@435 239 void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
duke@435 240
duke@435 241 //
duke@435 242 void tenured_allocation(size_t size) {
duke@435 243 _avg_pretenured->sample(size);
duke@435 244 }
duke@435 245
duke@435 246 // Accessors
duke@435 247 // NEEDS_CLEANUP should use sizes.hpp
duke@435 248
duke@435 249 size_t calculated_old_free_size_in_bytes() const {
duke@435 250 return (size_t)(_promo_size + avg_promoted()->padded_average());
duke@435 251 }
duke@435 252
duke@435 253 size_t average_old_live_in_bytes() const {
duke@435 254 return (size_t) avg_old_live()->average();
duke@435 255 }
duke@435 256
duke@435 257 size_t average_promoted_in_bytes() const {
duke@435 258 return (size_t)avg_promoted()->average();
duke@435 259 }
duke@435 260
duke@435 261 size_t padded_average_promoted_in_bytes() const {
duke@435 262 return (size_t)avg_promoted()->padded_average();
duke@435 263 }
duke@435 264
duke@435 265 int change_young_gen_for_maj_pauses() {
duke@435 266 return _change_young_gen_for_maj_pauses;
duke@435 267 }
duke@435 268 void set_change_young_gen_for_maj_pauses(int v) {
duke@435 269 _change_young_gen_for_maj_pauses = v;
duke@435 270 }
duke@435 271
duke@435 272 int change_old_gen_for_min_pauses() {
duke@435 273 return _change_old_gen_for_min_pauses;
duke@435 274 }
duke@435 275 void set_change_old_gen_for_min_pauses(int v) {
duke@435 276 _change_old_gen_for_min_pauses = v;
duke@435 277 }
duke@435 278
duke@435 279 // Return true if the old generation size was changed
duke@435 280 // to try to reach a pause time goal.
duke@435 281 bool old_gen_changed_for_pauses() {
duke@435 282 bool result = _change_old_gen_for_maj_pauses != 0 ||
duke@435 283 _change_old_gen_for_min_pauses != 0;
duke@435 284 return result;
duke@435 285 }
duke@435 286
duke@435 287 // Return true if the young generation size was changed
duke@435 288 // to try to reach a pause time goal.
duke@435 289 bool young_gen_changed_for_pauses() {
duke@435 290 bool result = _change_young_gen_for_min_pauses != 0 ||
duke@435 291 _change_young_gen_for_maj_pauses != 0;
duke@435 292 return result;
duke@435 293 }
duke@435 294 // end flags for pause goal
duke@435 295
duke@435 296 // Return true if the old generation size was changed
duke@435 297 // to try to reach a throughput goal.
duke@435 298 bool old_gen_changed_for_throughput() {
duke@435 299 bool result = _change_old_gen_for_throughput != 0;
duke@435 300 return result;
duke@435 301 }
duke@435 302
duke@435 303 // Return true if the young generation size was changed
duke@435 304 // to try to reach a throughput goal.
duke@435 305 bool young_gen_changed_for_throughput() {
duke@435 306 bool result = _change_young_gen_for_throughput != 0;
duke@435 307 return result;
duke@435 308 }
duke@435 309
duke@435 310 int decrease_for_footprint() { return _decrease_for_footprint; }
duke@435 311
duke@435 312
duke@435 313 // Accessors for estimators. The slope of the linear fit is
duke@435 314 // currently all that is used for making decisions.
duke@435 315
duke@435 316 LinearLeastSquareFit* major_pause_old_estimator() {
duke@435 317 return _major_pause_old_estimator;
duke@435 318 }
duke@435 319
duke@435 320 LinearLeastSquareFit* major_pause_young_estimator() {
duke@435 321 return _major_pause_young_estimator;
duke@435 322 }
duke@435 323
duke@435 324
duke@435 325 virtual void clear_generation_free_space_flags();
duke@435 326
duke@435 327 float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
duke@435 328 float major_pause_young_slope() {
duke@435 329 return _major_pause_young_estimator->slope();
duke@435 330 }
duke@435 331 float major_collection_slope() { return _major_collection_estimator->slope();}
duke@435 332
duke@435 333 bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
duke@435 334
duke@435 335 // Given the amount of live data in the heap, should we
duke@435 336 // perform a Full GC?
duke@435 337 bool should_full_GC(size_t live_in_old_gen);
duke@435 338
duke@435 339 // Calculates optimial free space sizes for both the old and young
duke@435 340 // generations. Stores results in _eden_size and _promo_size.
duke@435 341 // Takes current used space in all generations as input, as well
duke@435 342 // as an indication if a full gc has just been performed, for use
duke@435 343 // in deciding if an OOM error should be thrown.
duke@435 344 void compute_generation_free_space(size_t young_live,
duke@435 345 size_t eden_live,
duke@435 346 size_t old_live,
duke@435 347 size_t perm_live,
duke@435 348 size_t cur_eden, // current eden in bytes
duke@435 349 size_t max_old_gen_size,
duke@435 350 size_t max_eden_size,
duke@435 351 bool is_full_gc,
jmasa@1822 352 GCCause::Cause gc_cause,
jmasa@1822 353 CollectorPolicy* collector_policy);
duke@435 354
duke@435 355 // Calculates new survivor space size; returns a new tenuring threshold
duke@435 356 // value. Stores new survivor size in _survivor_size.
duke@435 357 int compute_survivor_space_size_and_threshold(bool is_survivor_overflow,
duke@435 358 int tenuring_threshold,
duke@435 359 size_t survivor_limit);
duke@435 360
duke@435 361 // Return the maximum size of a survivor space if the young generation were of
duke@435 362 // size gen_size.
duke@435 363 size_t max_survivor_size(size_t gen_size) {
duke@435 364 // Never allow the target survivor size to grow more than MinSurvivorRatio
duke@435 365 // of the young generation size. We cannot grow into a two semi-space
duke@435 366 // system, with Eden zero sized. Even if the survivor space grows, from()
duke@435 367 // might grow by moving the bottom boundary "down" -- so from space will
duke@435 368 // remain almost full anyway (top() will be near end(), but there will be a
duke@435 369 // large filler object at the bottom).
duke@435 370 const size_t sz = gen_size / MinSurvivorRatio;
duke@435 371 const size_t alignment = _intra_generation_alignment;
duke@435 372 return sz > alignment ? align_size_down(sz, alignment) : alignment;
duke@435 373 }
duke@435 374
duke@435 375 size_t live_at_last_full_gc() {
duke@435 376 return _live_at_last_full_gc;
duke@435 377 }
duke@435 378
duke@435 379 size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
duke@435 380 void reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
duke@435 381
duke@435 382 void set_bytes_absorbed_from_eden(size_t val) {
duke@435 383 _bytes_absorbed_from_eden = val;
duke@435 384 }
duke@435 385
duke@435 386 // Update averages that are always used (even
duke@435 387 // if adaptive sizing is turned off).
duke@435 388 void update_averages(bool is_survivor_overflow,
duke@435 389 size_t survived,
duke@435 390 size_t promoted);
duke@435 391
duke@435 392 // Printing support
duke@435 393 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
duke@435 394 };
stefank@2314 395
stefank@2314 396 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSADAPTIVESIZEPOLICY_HPP

mercurial