src/share/vm/utilities/taskqueue.hpp

Thu, 21 Aug 2008 23:36:31 -0400

author
tonyp
date
Thu, 21 Aug 2008 23:36:31 -0400
changeset 791
1ee8caae33af
parent 777
37f87013dfd8
parent 631
d1605aabd0a1
child 810
81cd571500b0
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class TaskQueueSuper: public CHeapObj {
duke@435 26 protected:
duke@435 27 // The first free element after the last one pushed (mod _n).
duke@435 28 // (For now we'll assume only 32-bit CAS).
duke@435 29 volatile juint _bottom;
duke@435 30
duke@435 31 // log2 of the size of the queue.
duke@435 32 enum SomeProtectedConstants {
duke@435 33 Log_n = 14
duke@435 34 };
duke@435 35
duke@435 36 // Size of the queue.
duke@435 37 juint n() { return (1 << Log_n); }
duke@435 38 // For computing "x mod n" efficiently.
duke@435 39 juint n_mod_mask() { return n() - 1; }
duke@435 40
duke@435 41 struct Age {
duke@435 42 jushort _top;
duke@435 43 jushort _tag;
duke@435 44
duke@435 45 jushort tag() const { return _tag; }
duke@435 46 jushort top() const { return _top; }
duke@435 47
duke@435 48 Age() { _tag = 0; _top = 0; }
duke@435 49
duke@435 50 friend bool operator ==(const Age& a1, const Age& a2) {
duke@435 51 return a1.tag() == a2.tag() && a1.top() == a2.top();
duke@435 52 }
duke@435 53
duke@435 54 };
duke@435 55 Age _age;
duke@435 56 // These make sure we do single atomic reads and writes.
duke@435 57 Age get_age() {
duke@435 58 jint res = *(volatile jint*)(&_age);
duke@435 59 return *(Age*)(&res);
duke@435 60 }
duke@435 61 void set_age(Age a) {
duke@435 62 *(volatile jint*)(&_age) = *(int*)(&a);
duke@435 63 }
duke@435 64
duke@435 65 jushort get_top() {
duke@435 66 return get_age().top();
duke@435 67 }
duke@435 68
duke@435 69 // These both operate mod _n.
duke@435 70 juint increment_index(juint ind) {
duke@435 71 return (ind + 1) & n_mod_mask();
duke@435 72 }
duke@435 73 juint decrement_index(juint ind) {
duke@435 74 return (ind - 1) & n_mod_mask();
duke@435 75 }
duke@435 76
duke@435 77 // Returns a number in the range [0.._n). If the result is "n-1", it
duke@435 78 // should be interpreted as 0.
duke@435 79 juint dirty_size(juint bot, juint top) {
duke@435 80 return ((jint)bot - (jint)top) & n_mod_mask();
duke@435 81 }
duke@435 82
duke@435 83 // Returns the size corresponding to the given "bot" and "top".
duke@435 84 juint size(juint bot, juint top) {
duke@435 85 juint sz = dirty_size(bot, top);
duke@435 86 // Has the queue "wrapped", so that bottom is less than top?
duke@435 87 // There's a complicated special case here. A pair of threads could
duke@435 88 // perform pop_local and pop_global operations concurrently, starting
duke@435 89 // from a state in which _bottom == _top+1. The pop_local could
duke@435 90 // succeed in decrementing _bottom, and the pop_global in incrementing
duke@435 91 // _top (in which case the pop_global will be awarded the contested
duke@435 92 // queue element.) The resulting state must be interpreted as an empty
duke@435 93 // queue. (We only need to worry about one such event: only the queue
duke@435 94 // owner performs pop_local's, and several concurrent threads
duke@435 95 // attempting to perform the pop_global will all perform the same CAS,
duke@435 96 // and only one can succeed. Any stealing thread that reads after
duke@435 97 // either the increment or decrement will seen an empty queue, and will
duke@435 98 // not join the competitors. The "sz == -1 || sz == _n-1" state will
duke@435 99 // not be modified by concurrent queues, so the owner thread can reset
duke@435 100 // the state to _bottom == top so subsequent pushes will be performed
duke@435 101 // normally.
duke@435 102 if (sz == (n()-1)) return 0;
duke@435 103 else return sz;
duke@435 104 }
duke@435 105
duke@435 106 public:
duke@435 107 TaskQueueSuper() : _bottom(0), _age() {}
duke@435 108
duke@435 109 // Return "true" if the TaskQueue contains any tasks.
duke@435 110 bool peek();
duke@435 111
duke@435 112 // Return an estimate of the number of elements in the queue.
duke@435 113 // The "careful" version admits the possibility of pop_local/pop_global
duke@435 114 // races.
duke@435 115 juint size() {
duke@435 116 return size(_bottom, get_top());
duke@435 117 }
duke@435 118
duke@435 119 juint dirty_size() {
duke@435 120 return dirty_size(_bottom, get_top());
duke@435 121 }
duke@435 122
ysr@777 123 void set_empty() {
ysr@777 124 _bottom = 0;
ysr@777 125 _age = Age();
ysr@777 126 }
ysr@777 127
duke@435 128 // Maximum number of elements allowed in the queue. This is two less
duke@435 129 // than the actual queue size, for somewhat complicated reasons.
duke@435 130 juint max_elems() { return n() - 2; }
duke@435 131
duke@435 132 };
duke@435 133
duke@435 134 template<class E> class GenericTaskQueue: public TaskQueueSuper {
duke@435 135 private:
duke@435 136 // Slow paths for push, pop_local. (pop_global has no fast path.)
duke@435 137 bool push_slow(E t, juint dirty_n_elems);
duke@435 138 bool pop_local_slow(juint localBot, Age oldAge);
duke@435 139
duke@435 140 public:
duke@435 141 // Initializes the queue to empty.
duke@435 142 GenericTaskQueue();
duke@435 143
duke@435 144 void initialize();
duke@435 145
duke@435 146 // Push the task "t" on the queue. Returns "false" iff the queue is
duke@435 147 // full.
duke@435 148 inline bool push(E t);
duke@435 149
duke@435 150 // If succeeds in claiming a task (from the 'local' end, that is, the
duke@435 151 // most recently pushed task), returns "true" and sets "t" to that task.
duke@435 152 // Otherwise, the queue is empty and returns false.
duke@435 153 inline bool pop_local(E& t);
duke@435 154
duke@435 155 // If succeeds in claiming a task (from the 'global' end, that is, the
duke@435 156 // least recently pushed task), returns "true" and sets "t" to that task.
duke@435 157 // Otherwise, the queue is empty and returns false.
duke@435 158 bool pop_global(E& t);
duke@435 159
duke@435 160 // Delete any resource associated with the queue.
duke@435 161 ~GenericTaskQueue();
duke@435 162
ysr@777 163 // apply the closure to all elements in the task queue
ysr@777 164 void oops_do(OopClosure* f);
ysr@777 165
duke@435 166 private:
duke@435 167 // Element array.
duke@435 168 volatile E* _elems;
duke@435 169 };
duke@435 170
duke@435 171 template<class E>
duke@435 172 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
duke@435 173 assert(sizeof(Age) == sizeof(jint), "Depends on this.");
duke@435 174 }
duke@435 175
duke@435 176 template<class E>
duke@435 177 void GenericTaskQueue<E>::initialize() {
duke@435 178 _elems = NEW_C_HEAP_ARRAY(E, n());
duke@435 179 guarantee(_elems != NULL, "Allocation failed.");
duke@435 180 }
duke@435 181
duke@435 182 template<class E>
ysr@777 183 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
ysr@777 184 // tty->print_cr("START OopTaskQueue::oops_do");
ysr@777 185 int iters = size();
ysr@777 186 juint index = _bottom;
ysr@777 187 for (int i = 0; i < iters; ++i) {
ysr@777 188 index = decrement_index(index);
ysr@777 189 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
ysr@777 190 // index, &_elems[index], _elems[index]);
ysr@777 191 E* t = (E*)&_elems[index]; // cast away volatility
ysr@777 192 oop* p = (oop*)t;
ysr@777 193 assert((*t)->is_oop_or_null(), "Not an oop or null");
ysr@777 194 f->do_oop(p);
ysr@777 195 }
ysr@777 196 // tty->print_cr("END OopTaskQueue::oops_do");
ysr@777 197 }
ysr@777 198
ysr@777 199
ysr@777 200 template<class E>
duke@435 201 bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
duke@435 202 if (dirty_n_elems == n() - 1) {
duke@435 203 // Actually means 0, so do the push.
duke@435 204 juint localBot = _bottom;
duke@435 205 _elems[localBot] = t;
duke@435 206 _bottom = increment_index(localBot);
duke@435 207 return true;
duke@435 208 } else
duke@435 209 return false;
duke@435 210 }
duke@435 211
duke@435 212 template<class E>
duke@435 213 bool GenericTaskQueue<E>::
duke@435 214 pop_local_slow(juint localBot, Age oldAge) {
duke@435 215 // This queue was observed to contain exactly one element; either this
duke@435 216 // thread will claim it, or a competing "pop_global". In either case,
duke@435 217 // the queue will be logically empty afterwards. Create a new Age value
duke@435 218 // that represents the empty queue for the given value of "_bottom". (We
duke@435 219 // must also increment "tag" because of the case where "bottom == 1",
duke@435 220 // "top == 0". A pop_global could read the queue element in that case,
duke@435 221 // then have the owner thread do a pop followed by another push. Without
duke@435 222 // the incrementing of "tag", the pop_global's CAS could succeed,
duke@435 223 // allowing it to believe it has claimed the stale element.)
duke@435 224 Age newAge;
duke@435 225 newAge._top = localBot;
duke@435 226 newAge._tag = oldAge.tag() + 1;
duke@435 227 // Perhaps a competing pop_global has already incremented "top", in which
duke@435 228 // case it wins the element.
duke@435 229 if (localBot == oldAge.top()) {
duke@435 230 Age tempAge;
duke@435 231 // No competing pop_global has yet incremented "top"; we'll try to
duke@435 232 // install new_age, thus claiming the element.
duke@435 233 assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint),
duke@435 234 "Assumption about CAS unit.");
duke@435 235 *(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
duke@435 236 if (tempAge == oldAge) {
duke@435 237 // We win.
duke@435 238 assert(dirty_size(localBot, get_top()) != n() - 1,
duke@435 239 "Shouldn't be possible...");
duke@435 240 return true;
duke@435 241 }
duke@435 242 }
duke@435 243 // We fail; a completing pop_global gets the element. But the queue is
duke@435 244 // empty (and top is greater than bottom.) Fix this representation of
duke@435 245 // the empty queue to become the canonical one.
duke@435 246 set_age(newAge);
duke@435 247 assert(dirty_size(localBot, get_top()) != n() - 1,
duke@435 248 "Shouldn't be possible...");
duke@435 249 return false;
duke@435 250 }
duke@435 251
duke@435 252 template<class E>
duke@435 253 bool GenericTaskQueue<E>::pop_global(E& t) {
duke@435 254 Age newAge;
duke@435 255 Age oldAge = get_age();
duke@435 256 juint localBot = _bottom;
duke@435 257 juint n_elems = size(localBot, oldAge.top());
duke@435 258 if (n_elems == 0) {
duke@435 259 return false;
duke@435 260 }
duke@435 261 t = _elems[oldAge.top()];
duke@435 262 newAge = oldAge;
duke@435 263 newAge._top = increment_index(newAge.top());
duke@435 264 if ( newAge._top == 0 ) newAge._tag++;
duke@435 265 Age resAge;
duke@435 266 *(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
duke@435 267 // Note that using "_bottom" here might fail, since a pop_local might
duke@435 268 // have decremented it.
duke@435 269 assert(dirty_size(localBot, newAge._top) != n() - 1,
duke@435 270 "Shouldn't be possible...");
duke@435 271 return (resAge == oldAge);
duke@435 272 }
duke@435 273
duke@435 274 template<class E>
duke@435 275 GenericTaskQueue<E>::~GenericTaskQueue() {
duke@435 276 FREE_C_HEAP_ARRAY(E, _elems);
duke@435 277 }
duke@435 278
duke@435 279 // Inherits the typedef of "Task" from above.
duke@435 280 class TaskQueueSetSuper: public CHeapObj {
duke@435 281 protected:
duke@435 282 static int randomParkAndMiller(int* seed0);
duke@435 283 public:
duke@435 284 // Returns "true" if some TaskQueue in the set contains a task.
duke@435 285 virtual bool peek() = 0;
duke@435 286 };
duke@435 287
duke@435 288 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
duke@435 289 private:
duke@435 290 int _n;
duke@435 291 GenericTaskQueue<E>** _queues;
duke@435 292
duke@435 293 public:
duke@435 294 GenericTaskQueueSet(int n) : _n(n) {
duke@435 295 typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
duke@435 296 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
duke@435 297 guarantee(_queues != NULL, "Allocation failure.");
duke@435 298 for (int i = 0; i < n; i++) {
duke@435 299 _queues[i] = NULL;
duke@435 300 }
duke@435 301 }
duke@435 302
duke@435 303 bool steal_1_random(int queue_num, int* seed, E& t);
duke@435 304 bool steal_best_of_2(int queue_num, int* seed, E& t);
duke@435 305 bool steal_best_of_all(int queue_num, int* seed, E& t);
duke@435 306
duke@435 307 void register_queue(int i, GenericTaskQueue<E>* q);
duke@435 308
duke@435 309 GenericTaskQueue<E>* queue(int n);
duke@435 310
duke@435 311 // The thread with queue number "queue_num" (and whose random number seed
duke@435 312 // is at "seed") is trying to steal a task from some other queue. (It
duke@435 313 // may try several queues, according to some configuration parameter.)
duke@435 314 // If some steal succeeds, returns "true" and sets "t" the stolen task,
duke@435 315 // otherwise returns false.
duke@435 316 bool steal(int queue_num, int* seed, E& t);
duke@435 317
duke@435 318 bool peek();
duke@435 319 };
duke@435 320
duke@435 321 template<class E>
duke@435 322 void GenericTaskQueueSet<E>::register_queue(int i, GenericTaskQueue<E>* q) {
duke@435 323 assert(0 <= i && i < _n, "index out of range.");
duke@435 324 _queues[i] = q;
duke@435 325 }
duke@435 326
duke@435 327 template<class E>
duke@435 328 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(int i) {
duke@435 329 return _queues[i];
duke@435 330 }
duke@435 331
duke@435 332 template<class E>
duke@435 333 bool GenericTaskQueueSet<E>::steal(int queue_num, int* seed, E& t) {
duke@435 334 for (int i = 0; i < 2 * _n; i++)
duke@435 335 if (steal_best_of_2(queue_num, seed, t))
duke@435 336 return true;
duke@435 337 return false;
duke@435 338 }
duke@435 339
duke@435 340 template<class E>
duke@435 341 bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
duke@435 342 if (_n > 2) {
duke@435 343 int best_k;
duke@435 344 jint best_sz = 0;
duke@435 345 for (int k = 0; k < _n; k++) {
duke@435 346 if (k == queue_num) continue;
duke@435 347 jint sz = _queues[k]->size();
duke@435 348 if (sz > best_sz) {
duke@435 349 best_sz = sz;
duke@435 350 best_k = k;
duke@435 351 }
duke@435 352 }
duke@435 353 return best_sz > 0 && _queues[best_k]->pop_global(t);
duke@435 354 } else if (_n == 2) {
duke@435 355 // Just try the other one.
duke@435 356 int k = (queue_num + 1) % 2;
duke@435 357 return _queues[k]->pop_global(t);
duke@435 358 } else {
duke@435 359 assert(_n == 1, "can't be zero.");
duke@435 360 return false;
duke@435 361 }
duke@435 362 }
duke@435 363
duke@435 364 template<class E>
duke@435 365 bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
duke@435 366 if (_n > 2) {
duke@435 367 int k = queue_num;
duke@435 368 while (k == queue_num) k = randomParkAndMiller(seed) % _n;
duke@435 369 return _queues[2]->pop_global(t);
duke@435 370 } else if (_n == 2) {
duke@435 371 // Just try the other one.
duke@435 372 int k = (queue_num + 1) % 2;
duke@435 373 return _queues[k]->pop_global(t);
duke@435 374 } else {
duke@435 375 assert(_n == 1, "can't be zero.");
duke@435 376 return false;
duke@435 377 }
duke@435 378 }
duke@435 379
duke@435 380 template<class E>
duke@435 381 bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
duke@435 382 if (_n > 2) {
duke@435 383 int k1 = queue_num;
duke@435 384 while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
duke@435 385 int k2 = queue_num;
duke@435 386 while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
duke@435 387 // Sample both and try the larger.
duke@435 388 juint sz1 = _queues[k1]->size();
duke@435 389 juint sz2 = _queues[k2]->size();
duke@435 390 if (sz2 > sz1) return _queues[k2]->pop_global(t);
duke@435 391 else return _queues[k1]->pop_global(t);
duke@435 392 } else if (_n == 2) {
duke@435 393 // Just try the other one.
duke@435 394 int k = (queue_num + 1) % 2;
duke@435 395 return _queues[k]->pop_global(t);
duke@435 396 } else {
duke@435 397 assert(_n == 1, "can't be zero.");
duke@435 398 return false;
duke@435 399 }
duke@435 400 }
duke@435 401
duke@435 402 template<class E>
duke@435 403 bool GenericTaskQueueSet<E>::peek() {
duke@435 404 // Try all the queues.
duke@435 405 for (int j = 0; j < _n; j++) {
duke@435 406 if (_queues[j]->peek())
duke@435 407 return true;
duke@435 408 }
duke@435 409 return false;
duke@435 410 }
duke@435 411
ysr@777 412 // When to terminate from the termination protocol.
ysr@777 413 class TerminatorTerminator: public CHeapObj {
ysr@777 414 public:
ysr@777 415 virtual bool should_exit_termination() = 0;
ysr@777 416 };
ysr@777 417
duke@435 418 // A class to aid in the termination of a set of parallel tasks using
duke@435 419 // TaskQueueSet's for work stealing.
duke@435 420
duke@435 421 class ParallelTaskTerminator: public StackObj {
duke@435 422 private:
duke@435 423 int _n_threads;
duke@435 424 TaskQueueSetSuper* _queue_set;
duke@435 425 jint _offered_termination;
duke@435 426
duke@435 427 bool peek_in_queue_set();
duke@435 428 protected:
duke@435 429 virtual void yield();
duke@435 430 void sleep(uint millis);
duke@435 431
duke@435 432 public:
duke@435 433
duke@435 434 // "n_threads" is the number of threads to be terminated. "queue_set" is a
duke@435 435 // queue sets of work queues of other threads.
duke@435 436 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
duke@435 437
duke@435 438 // The current thread has no work, and is ready to terminate if everyone
duke@435 439 // else is. If returns "true", all threads are terminated. If returns
duke@435 440 // "false", available work has been observed in one of the task queues,
duke@435 441 // so the global task is not complete.
ysr@777 442 bool offer_termination() {
ysr@777 443 return offer_termination(NULL);
ysr@777 444 }
ysr@777 445
ysr@777 446 // As above, but it also terminates of the should_exit_termination()
ysr@777 447 // method of the terminator parameter returns true. If terminator is
ysr@777 448 // NULL, then it is ignored.
ysr@777 449 bool offer_termination(TerminatorTerminator* terminator);
duke@435 450
duke@435 451 // Reset the terminator, so that it may be reused again.
duke@435 452 // The caller is responsible for ensuring that this is done
duke@435 453 // in an MT-safe manner, once the previous round of use of
duke@435 454 // the terminator is finished.
duke@435 455 void reset_for_reuse();
duke@435 456
duke@435 457 };
duke@435 458
duke@435 459 #define SIMPLE_STACK 0
duke@435 460
duke@435 461 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
duke@435 462 #if SIMPLE_STACK
duke@435 463 juint localBot = _bottom;
duke@435 464 if (_bottom < max_elems()) {
duke@435 465 _elems[localBot] = t;
duke@435 466 _bottom = localBot + 1;
duke@435 467 return true;
duke@435 468 } else {
duke@435 469 return false;
duke@435 470 }
duke@435 471 #else
duke@435 472 juint localBot = _bottom;
duke@435 473 assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
duke@435 474 jushort top = get_top();
duke@435 475 juint dirty_n_elems = dirty_size(localBot, top);
duke@435 476 assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
duke@435 477 "n_elems out of range.");
duke@435 478 if (dirty_n_elems < max_elems()) {
duke@435 479 _elems[localBot] = t;
duke@435 480 _bottom = increment_index(localBot);
duke@435 481 return true;
duke@435 482 } else {
duke@435 483 return push_slow(t, dirty_n_elems);
duke@435 484 }
duke@435 485 #endif
duke@435 486 }
duke@435 487
duke@435 488 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
duke@435 489 #if SIMPLE_STACK
duke@435 490 juint localBot = _bottom;
duke@435 491 assert(localBot > 0, "precondition.");
duke@435 492 localBot--;
duke@435 493 t = _elems[localBot];
duke@435 494 _bottom = localBot;
duke@435 495 return true;
duke@435 496 #else
duke@435 497 juint localBot = _bottom;
duke@435 498 // This value cannot be n-1. That can only occur as a result of
duke@435 499 // the assignment to bottom in this method. If it does, this method
duke@435 500 // resets the size( to 0 before the next call (which is sequential,
duke@435 501 // since this is pop_local.)
duke@435 502 juint dirty_n_elems = dirty_size(localBot, get_top());
duke@435 503 assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
duke@435 504 if (dirty_n_elems == 0) return false;
duke@435 505 localBot = decrement_index(localBot);
duke@435 506 _bottom = localBot;
duke@435 507 // This is necessary to prevent any read below from being reordered
duke@435 508 // before the store just above.
duke@435 509 OrderAccess::fence();
duke@435 510 t = _elems[localBot];
duke@435 511 // This is a second read of "age"; the "size()" above is the first.
duke@435 512 // If there's still at least one element in the queue, based on the
duke@435 513 // "_bottom" and "age" we've read, then there can be no interference with
duke@435 514 // a "pop_global" operation, and we're done.
duke@435 515 juint tp = get_top();
duke@435 516 if (size(localBot, tp) > 0) {
duke@435 517 assert(dirty_size(localBot, tp) != n() - 1,
duke@435 518 "Shouldn't be possible...");
duke@435 519 return true;
duke@435 520 } else {
duke@435 521 // Otherwise, the queue contained exactly one element; we take the slow
duke@435 522 // path.
duke@435 523 return pop_local_slow(localBot, get_age());
duke@435 524 }
duke@435 525 #endif
duke@435 526 }
duke@435 527
duke@435 528 typedef oop Task;
duke@435 529 typedef GenericTaskQueue<Task> OopTaskQueue;
duke@435 530 typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
duke@435 531
coleenp@548 532
coleenp@548 533 #define COMPRESSED_OOP_MASK 1
coleenp@548 534
coleenp@548 535 // This is a container class for either an oop* or a narrowOop*.
coleenp@548 536 // Both are pushed onto a task queue and the consumer will test is_narrow()
coleenp@548 537 // to determine which should be processed.
coleenp@548 538 class StarTask {
coleenp@548 539 void* _holder; // either union oop* or narrowOop*
coleenp@548 540 public:
coleenp@548 541 StarTask(narrowOop *p) { _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); }
coleenp@548 542 StarTask(oop *p) { _holder = (void*)p; }
coleenp@548 543 StarTask() { _holder = NULL; }
coleenp@548 544 operator oop*() { return (oop*)_holder; }
coleenp@548 545 operator narrowOop*() {
coleenp@548 546 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
coleenp@548 547 }
coleenp@548 548
coleenp@548 549 // Operators to preserve const/volatile in assignments required by gcc
coleenp@548 550 void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
coleenp@548 551
coleenp@548 552 bool is_narrow() const {
coleenp@548 553 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
coleenp@548 554 }
coleenp@548 555 };
coleenp@548 556
duke@435 557 typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
duke@435 558 typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
duke@435 559
duke@435 560 typedef size_t ChunkTask; // index for chunk
duke@435 561 typedef GenericTaskQueue<ChunkTask> ChunkTaskQueue;
duke@435 562 typedef GenericTaskQueueSet<ChunkTask> ChunkTaskQueueSet;
duke@435 563
duke@435 564 class ChunkTaskQueueWithOverflow: public CHeapObj {
duke@435 565 protected:
duke@435 566 ChunkTaskQueue _chunk_queue;
duke@435 567 GrowableArray<ChunkTask>* _overflow_stack;
duke@435 568
duke@435 569 public:
duke@435 570 ChunkTaskQueueWithOverflow() : _overflow_stack(NULL) {}
duke@435 571 // Initialize both stealable queue and overflow
duke@435 572 void initialize();
duke@435 573 // Save first to stealable queue and then to overflow
duke@435 574 void save(ChunkTask t);
duke@435 575 // Retrieve first from overflow and then from stealable queue
duke@435 576 bool retrieve(ChunkTask& chunk_index);
duke@435 577 // Retrieve from stealable queue
duke@435 578 bool retrieve_from_stealable_queue(ChunkTask& chunk_index);
duke@435 579 // Retrieve from overflow
duke@435 580 bool retrieve_from_overflow(ChunkTask& chunk_index);
duke@435 581 bool is_empty();
duke@435 582 bool stealable_is_empty();
duke@435 583 bool overflow_is_empty();
duke@435 584 juint stealable_size() { return _chunk_queue.size(); }
duke@435 585 ChunkTaskQueue* task_queue() { return &_chunk_queue; }
duke@435 586 };
duke@435 587
duke@435 588 #define USE_ChunkTaskQueueWithOverflow

mercurial