src/share/vm/opto/phaseX.hpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 3043
c96c3eb1efae
child 3407
35acf8f0a2e4
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_PHASEX_HPP
stefank@2314 26 #define SHARE_VM_OPTO_PHASEX_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/dict.hpp"
stefank@2314 29 #include "libadt/vectset.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
stefank@2314 31 #include "opto/memnode.hpp"
stefank@2314 32 #include "opto/node.hpp"
stefank@2314 33 #include "opto/phase.hpp"
stefank@2314 34 #include "opto/type.hpp"
stefank@2314 35
duke@435 36 class Compile;
duke@435 37 class ConINode;
duke@435 38 class ConLNode;
duke@435 39 class Node;
duke@435 40 class Type;
duke@435 41 class PhaseTransform;
duke@435 42 class PhaseGVN;
duke@435 43 class PhaseIterGVN;
duke@435 44 class PhaseCCP;
duke@435 45 class PhasePeephole;
duke@435 46 class PhaseRegAlloc;
duke@435 47
duke@435 48
duke@435 49 //-----------------------------------------------------------------------------
duke@435 50 // Expandable closed hash-table of nodes, initialized to NULL.
duke@435 51 // Note that the constructor just zeros things
duke@435 52 // Storage is reclaimed when the Arena's lifetime is over.
duke@435 53 class NodeHash : public StackObj {
duke@435 54 protected:
duke@435 55 Arena *_a; // Arena to allocate in
duke@435 56 uint _max; // Size of table (power of 2)
duke@435 57 uint _inserts; // For grow and debug, count of hash_inserts
duke@435 58 uint _insert_limit; // 'grow' when _inserts reaches _insert_limit
duke@435 59 Node **_table; // Hash table of Node pointers
duke@435 60 Node *_sentinel; // Replaces deleted entries in hash table
duke@435 61
duke@435 62 public:
duke@435 63 NodeHash(uint est_max_size);
duke@435 64 NodeHash(Arena *arena, uint est_max_size);
duke@435 65 NodeHash(NodeHash *use_this_state);
duke@435 66 #ifdef ASSERT
duke@435 67 ~NodeHash(); // Unlock all nodes upon destruction of table.
duke@435 68 void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
duke@435 69 #endif
duke@435 70 Node *hash_find(const Node*);// Find an equivalent version in hash table
duke@435 71 Node *hash_find_insert(Node*);// If not in table insert else return found node
duke@435 72 void hash_insert(Node*); // Insert into hash table
duke@435 73 bool hash_delete(const Node*);// Replace with _sentinel in hash table
duke@435 74 void check_grow() {
duke@435 75 _inserts++;
duke@435 76 if( _inserts == _insert_limit ) { grow(); }
duke@435 77 assert( _inserts <= _insert_limit, "hash table overflow");
duke@435 78 assert( _inserts < _max, "hash table overflow" );
duke@435 79 }
duke@435 80 static uint round_up(uint); // Round up to nearest power of 2
duke@435 81 void grow(); // Grow _table to next power of 2 and rehash
duke@435 82 // Return 75% of _max, rounded up.
duke@435 83 uint insert_limit() const { return _max - (_max>>2); }
duke@435 84
duke@435 85 void clear(); // Set all entries to NULL, keep storage.
duke@435 86 // Size of hash table
duke@435 87 uint size() const { return _max; }
duke@435 88 // Return Node* at index in table
duke@435 89 Node *at(uint table_index) {
duke@435 90 assert(table_index < _max, "Must be within table");
duke@435 91 return _table[table_index];
duke@435 92 }
duke@435 93
duke@435 94 void remove_useless_nodes(VectorSet &useful); // replace with sentinel
duke@435 95
duke@435 96 Node *sentinel() { return _sentinel; }
duke@435 97
duke@435 98 #ifndef PRODUCT
duke@435 99 Node *find_index(uint idx); // For debugging
duke@435 100 void dump(); // For debugging, dump statistics
duke@435 101 #endif
duke@435 102 uint _grows; // For debugging, count of table grow()s
duke@435 103 uint _look_probes; // For debugging, count of hash probes
duke@435 104 uint _lookup_hits; // For debugging, count of hash_finds
duke@435 105 uint _lookup_misses; // For debugging, count of hash_finds
duke@435 106 uint _insert_probes; // For debugging, count of hash probes
duke@435 107 uint _delete_probes; // For debugging, count of hash probes for deletes
duke@435 108 uint _delete_hits; // For debugging, count of hash probes for deletes
duke@435 109 uint _delete_misses; // For debugging, count of hash probes for deletes
duke@435 110 uint _total_inserts; // For debugging, total inserts into hash table
duke@435 111 uint _total_insert_probes; // For debugging, total probes while inserting
duke@435 112 };
duke@435 113
duke@435 114
duke@435 115 //-----------------------------------------------------------------------------
duke@435 116 // Map dense integer indices to Types. Uses classic doubling-array trick.
duke@435 117 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
duke@435 118 // Note that the constructor just zeros things, and since I use Arena
duke@435 119 // allocation I do not need a destructor to reclaim storage.
duke@435 120 // Despite the general name, this class is customized for use by PhaseTransform.
duke@435 121 class Type_Array : public StackObj {
duke@435 122 Arena *_a; // Arena to allocate in
duke@435 123 uint _max;
duke@435 124 const Type **_types;
duke@435 125 void grow( uint i ); // Grow array node to fit
duke@435 126 const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@435 127 { return (i<_max) ? _types[i] : (Type*)NULL; }
duke@435 128 friend class PhaseTransform;
duke@435 129 public:
duke@435 130 Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
duke@435 131 Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
duke@435 132 const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
duke@435 133 // Extend the mapping: index i maps to Type *n.
duke@435 134 void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
duke@435 135 uint Size() const { return _max; }
duke@435 136 #ifndef PRODUCT
duke@435 137 void dump() const;
duke@435 138 #endif
duke@435 139 };
duke@435 140
duke@435 141
duke@435 142 //------------------------------PhaseRemoveUseless-----------------------------
duke@435 143 // Remove useless nodes from GVN hash-table, worklist, and graph
duke@435 144 class PhaseRemoveUseless : public Phase {
duke@435 145 protected:
duke@435 146 Unique_Node_List _useful; // Nodes reachable from root
duke@435 147 // list is allocated from current resource area
duke@435 148 public:
duke@435 149 PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
duke@435 150
duke@435 151 Unique_Node_List *get_useful() { return &_useful; }
duke@435 152 };
duke@435 153
duke@435 154
duke@435 155 //------------------------------PhaseTransform---------------------------------
duke@435 156 // Phases that analyze, then transform. Constructing the Phase object does any
duke@435 157 // global or slow analysis. The results are cached later for a fast
duke@435 158 // transformation pass. When the Phase object is deleted the cached analysis
duke@435 159 // results are deleted.
duke@435 160 class PhaseTransform : public Phase {
duke@435 161 protected:
duke@435 162 Arena* _arena;
duke@435 163 Node_Array _nodes; // Map old node indices to new nodes.
duke@435 164 Type_Array _types; // Map old node indices to Types.
duke@435 165
duke@435 166 // ConNode caches:
duke@435 167 enum { _icon_min = -1 * HeapWordSize,
duke@435 168 _icon_max = 16 * HeapWordSize,
duke@435 169 _lcon_min = _icon_min,
duke@435 170 _lcon_max = _icon_max,
duke@435 171 _zcon_max = (uint)T_CONFLICT
duke@435 172 };
duke@435 173 ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes
duke@435 174 ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes
duke@435 175 ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes
duke@435 176 void init_con_caches();
duke@435 177
duke@435 178 // Support both int and long caches because either might be an intptr_t,
duke@435 179 // so they show up frequently in address computations.
duke@435 180
duke@435 181 public:
duke@435 182 PhaseTransform( PhaseNumber pnum );
duke@435 183 PhaseTransform( Arena *arena, PhaseNumber pnum );
duke@435 184 PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
duke@435 185
duke@435 186 Arena* arena() { return _arena; }
duke@435 187 Type_Array& types() { return _types; }
duke@435 188 // _nodes is used in varying ways by subclasses, which define local accessors
duke@435 189
duke@435 190 public:
duke@435 191 // Get a previously recorded type for the node n.
duke@435 192 // This type must already have been recorded.
duke@435 193 // If you want the type of a very new (untransformed) node,
duke@435 194 // you must use type_or_null, and test the result for NULL.
duke@435 195 const Type* type(const Node* n) const {
duke@435 196 const Type* t = _types.fast_lookup(n->_idx);
duke@435 197 assert(t != NULL, "must set before get");
duke@435 198 return t;
duke@435 199 }
duke@435 200 // Get a previously recorded type for the node n,
duke@435 201 // or else return NULL if there is none.
duke@435 202 const Type* type_or_null(const Node* n) const {
duke@435 203 return _types.fast_lookup(n->_idx);
duke@435 204 }
duke@435 205 // Record a type for a node.
duke@435 206 void set_type(const Node* n, const Type *t) {
duke@435 207 assert(t != NULL, "type must not be null");
duke@435 208 _types.map(n->_idx, t);
duke@435 209 }
duke@435 210 // Record an initial type for a node, the node's bottom type.
duke@435 211 void set_type_bottom(const Node* n) {
duke@435 212 // Use this for initialization when bottom_type() (or better) is not handy.
duke@435 213 // Usually the initialization shoudl be to n->Value(this) instead,
duke@435 214 // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
duke@435 215 assert(_types[n->_idx] == NULL, "must set the initial type just once");
duke@435 216 _types.map(n->_idx, n->bottom_type());
duke@435 217 }
duke@435 218 // Make sure the types array is big enough to record a size for the node n.
duke@435 219 // (In product builds, we never want to do range checks on the types array!)
duke@435 220 void ensure_type_or_null(const Node* n) {
duke@435 221 if (n->_idx >= _types.Size())
duke@435 222 _types.map(n->_idx, NULL); // Grow the types array as needed.
duke@435 223 }
duke@435 224
duke@435 225 // Utility functions:
duke@435 226 const TypeInt* find_int_type( Node* n);
duke@435 227 const TypeLong* find_long_type(Node* n);
duke@435 228 jint find_int_con( Node* n, jint value_if_unknown) {
duke@435 229 const TypeInt* t = find_int_type(n);
duke@435 230 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 231 }
duke@435 232 jlong find_long_con(Node* n, jlong value_if_unknown) {
duke@435 233 const TypeLong* t = find_long_type(n);
duke@435 234 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 235 }
duke@435 236
duke@435 237 // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
duke@435 238 // Same as transform(ConNode::make(t)).
duke@435 239 ConNode* makecon(const Type* t);
duke@435 240 virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues
duke@435 241 { ShouldNotCallThis(); return NULL; }
duke@435 242
duke@435 243 // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l).
duke@435 244 ConINode* intcon(jint i);
duke@435 245 ConLNode* longcon(jlong l);
duke@435 246
duke@435 247 // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)).
duke@435 248 ConNode* zerocon(BasicType bt);
duke@435 249
duke@435 250 // Return a node which computes the same function as this node, but
duke@435 251 // in a faster or cheaper fashion.
duke@435 252 virtual Node *transform( Node *n ) = 0;
duke@435 253
duke@435 254 // Return whether two Nodes are equivalent.
duke@435 255 // Must not be recursive, since the recursive version is built from this.
duke@435 256 // For pessimistic optimizations this is simply pointer equivalence.
duke@435 257 bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
duke@435 258
duke@435 259 // Return whether two Nodes are equivalent, after stripping casting.
duke@435 260 bool eqv_uncast(const Node* n1, const Node* n2) const {
duke@435 261 return eqv(n1->uncast(), n2->uncast());
duke@435 262 }
duke@435 263
duke@435 264 // For pessimistic passes, the return type must monotonically narrow.
duke@435 265 // For optimistic passes, the return type must monotonically widen.
duke@435 266 // It is possible to get into a "death march" in either type of pass,
duke@435 267 // where the types are continually moving but it will take 2**31 or
duke@435 268 // more steps to converge. This doesn't happen on most normal loops.
duke@435 269 //
duke@435 270 // Here is an example of a deadly loop for an optimistic pass, along
duke@435 271 // with a partial trace of inferred types:
duke@435 272 // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
duke@435 273 // 0 1 join([0..max], 1)
duke@435 274 // [0..1] [1..2] join([0..max], [1..2])
duke@435 275 // [0..2] [1..3] join([0..max], [1..3])
duke@435 276 // ... ... ...
duke@435 277 // [0..max] [min]u[1..max] join([0..max], [min..max])
duke@435 278 // [0..max] ==> fixpoint
duke@435 279 // We would have proven, the hard way, that the iteration space is all
duke@435 280 // non-negative ints, with the loop terminating due to 32-bit overflow.
duke@435 281 //
duke@435 282 // Here is the corresponding example for a pessimistic pass:
duke@435 283 // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
duke@435 284 // int int join([0..max], int)
duke@435 285 // [0..max] [-1..max-1] join([0..max], [-1..max-1])
duke@435 286 // [0..max-1] [-1..max-2] join([0..max], [-1..max-2])
duke@435 287 // ... ... ...
duke@435 288 // [0..1] [-1..0] join([0..max], [-1..0])
duke@435 289 // 0 -1 join([0..max], -1)
duke@435 290 // 0 == fixpoint
duke@435 291 // We would have proven, the hard way, that the iteration space is {0}.
duke@435 292 // (Usually, other optimizations will make the "if (x >= 0)" fold up
duke@435 293 // before we get into trouble. But not always.)
duke@435 294 //
duke@435 295 // It's a pleasant thing to observe that the pessimistic pass
duke@435 296 // will make short work of the optimistic pass's deadly loop,
duke@435 297 // and vice versa. That is a good example of the complementary
duke@435 298 // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
duke@435 299 //
duke@435 300 // In any case, only widen or narrow a few times before going to the
duke@435 301 // correct flavor of top or bottom.
duke@435 302 //
duke@435 303 // This call only needs to be made once as the data flows around any
duke@435 304 // given cycle. We do it at Phis, and nowhere else.
duke@435 305 // The types presented are the new type of a phi (computed by PhiNode::Value)
duke@435 306 // and the previously computed type, last time the phi was visited.
duke@435 307 //
duke@435 308 // The third argument is upper limit for the saturated value,
duke@435 309 // if the phase wishes to widen the new_type.
duke@435 310 // If the phase is narrowing, the old type provides a lower limit.
duke@435 311 // Caller guarantees that old_type and new_type are no higher than limit_type.
duke@435 312 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 313 const Type* limit_type) const
duke@435 314 { ShouldNotCallThis(); return NULL; }
duke@435 315
duke@435 316 #ifndef PRODUCT
duke@435 317 void dump_old2new_map() const;
duke@435 318 void dump_new( uint new_lidx ) const;
duke@435 319 void dump_types() const;
duke@435 320 void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
duke@435 321 void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
duke@435 322
duke@435 323 uint _count_progress; // For profiling, count transforms that make progress
jcoomes@1844 324 void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
duke@435 325 void clear_progress() { _count_progress = 0; }
duke@435 326 uint made_progress() const { return _count_progress; }
duke@435 327
duke@435 328 uint _count_transforms; // For profiling, count transforms performed
duke@435 329 void set_transforms() { ++_count_transforms; }
duke@435 330 void clear_transforms() { _count_transforms = 0; }
duke@435 331 uint made_transforms() const{ return _count_transforms; }
duke@435 332
duke@435 333 bool _allow_progress; // progress not allowed during verification pass
duke@435 334 void set_allow_progress(bool allow) { _allow_progress = allow; }
duke@435 335 bool allow_progress() { return _allow_progress; }
duke@435 336 #endif
duke@435 337 };
duke@435 338
duke@435 339 //------------------------------PhaseValues------------------------------------
duke@435 340 // Phase infrastructure to support values
duke@435 341 class PhaseValues : public PhaseTransform {
duke@435 342 protected:
duke@435 343 NodeHash _table; // Hash table for value-numbering
duke@435 344
duke@435 345 public:
duke@435 346 PhaseValues( Arena *arena, uint est_max_size );
duke@435 347 PhaseValues( PhaseValues *pt );
duke@435 348 PhaseValues( PhaseValues *ptv, const char *dummy );
duke@435 349 NOT_PRODUCT( ~PhaseValues(); )
duke@435 350 virtual PhaseIterGVN *is_IterGVN() { return 0; }
duke@435 351
duke@435 352 // Some Ideal and other transforms delete --> modify --> insert values
duke@435 353 bool hash_delete(Node *n) { return _table.hash_delete(n); }
duke@435 354 void hash_insert(Node *n) { _table.hash_insert(n); }
duke@435 355 Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
duke@435 356 Node *hash_find(const Node *n) { return _table.hash_find(n); }
duke@435 357
duke@435 358 // Used after parsing to eliminate values that are no longer in program
never@1515 359 void remove_useless_nodes(VectorSet &useful) {
never@1515 360 _table.remove_useless_nodes(useful);
never@1515 361 // this may invalidate cached cons so reset the cache
never@1515 362 init_con_caches();
never@1515 363 }
duke@435 364
duke@435 365 virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform
duke@435 366
duke@435 367 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 368 const Type* limit_type) const
duke@435 369 { return new_type; }
duke@435 370
duke@435 371 #ifndef PRODUCT
duke@435 372 uint _count_new_values; // For profiling, count new values produced
duke@435 373 void inc_new_values() { ++_count_new_values; }
duke@435 374 void clear_new_values() { _count_new_values = 0; }
duke@435 375 uint made_new_values() const { return _count_new_values; }
duke@435 376 #endif
duke@435 377 };
duke@435 378
duke@435 379
duke@435 380 //------------------------------PhaseGVN---------------------------------------
duke@435 381 // Phase for performing local, pessimistic GVN-style optimizations.
duke@435 382 class PhaseGVN : public PhaseValues {
duke@435 383 public:
duke@435 384 PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
duke@435 385 PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
duke@435 386 PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
duke@435 387
duke@435 388 // Return a node which computes the same function as this node, but
duke@435 389 // in a faster or cheaper fashion.
duke@435 390 Node *transform( Node *n );
duke@435 391 Node *transform_no_reclaim( Node *n );
duke@435 392
duke@435 393 // Check for a simple dead loop when a data node references itself.
duke@435 394 DEBUG_ONLY(void dead_loop_check(Node *n);)
duke@435 395 };
duke@435 396
duke@435 397 //------------------------------PhaseIterGVN-----------------------------------
duke@435 398 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
duke@435 399 // and ideal transformations on the graph.
duke@435 400 class PhaseIterGVN : public PhaseGVN {
coleenp@548 401 private:
coleenp@548 402 bool _delay_transform; // When true simply register the node when calling transform
coleenp@548 403 // instead of actually optimizing it
coleenp@548 404
duke@435 405 // Idealize old Node 'n' with respect to its inputs and its value
duke@435 406 virtual Node *transform_old( Node *a_node );
kvn@1976 407
kvn@1976 408 // Subsume users of node 'old' into node 'nn'
kvn@1976 409 void subsume_node( Node *old, Node *nn );
kvn@1976 410
duke@435 411 protected:
duke@435 412
duke@435 413 // Idealize new Node 'n' with respect to its inputs and its value
duke@435 414 virtual Node *transform( Node *a_node );
duke@435 415
duke@435 416 // Warm up hash table, type table and initial worklist
duke@435 417 void init_worklist( Node *a_root );
duke@435 418
duke@435 419 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 420 const Type* limit_type) const;
duke@435 421 // Usually returns new_type. Returns old_type if new_type is only a slight
duke@435 422 // improvement, such that it would take many (>>10) steps to reach 2**32.
duke@435 423
duke@435 424 public:
duke@435 425 PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
duke@435 426 PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
duke@435 427 PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
duke@435 428
duke@435 429 virtual PhaseIterGVN *is_IterGVN() { return this; }
duke@435 430
duke@435 431 Unique_Node_List _worklist; // Iterative worklist
duke@435 432
duke@435 433 // Given def-use info and an initial worklist, apply Node::Ideal,
duke@435 434 // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
duke@435 435 // and dominator info to a fixed point.
duke@435 436 void optimize();
duke@435 437
duke@435 438 // Register a new node with the iter GVN pass without transforming it.
duke@435 439 // Used when we need to restructure a Region/Phi area and all the Regions
duke@435 440 // and Phis need to complete this one big transform before any other
duke@435 441 // transforms can be triggered on the region.
duke@435 442 // Optional 'orig' is an earlier version of this node.
duke@435 443 // It is significant only for debugging and profiling.
duke@435 444 Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
duke@435 445
duke@435 446 // Kill a globally dead Node. It is allowed to have uses which are
duke@435 447 // assumed dead and left 'in limbo'.
duke@435 448 void remove_globally_dead_node( Node *dead );
duke@435 449
duke@435 450 // Kill all inputs to a dead node, recursively making more dead nodes.
duke@435 451 // The Node must be dead locally, i.e., have no uses.
duke@435 452 void remove_dead_node( Node *dead ) {
duke@435 453 assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
duke@435 454 remove_globally_dead_node(dead);
duke@435 455 }
duke@435 456
duke@435 457 // Add users of 'n' to worklist
duke@435 458 void add_users_to_worklist0( Node *n );
duke@435 459 void add_users_to_worklist ( Node *n );
duke@435 460
kvn@508 461 // Replace old node with new one.
kvn@508 462 void replace_node( Node *old, Node *nn ) {
kvn@508 463 add_users_to_worklist(old);
kvn@1976 464 hash_delete(old); // Yank from hash before hacking edges
kvn@508 465 subsume_node(old, nn);
kvn@508 466 }
kvn@508 467
kvn@1286 468 bool delay_transform() const { return _delay_transform; }
kvn@1286 469
coleenp@548 470 void set_delay_transform(bool delay) {
coleenp@548 471 _delay_transform = delay;
coleenp@548 472 }
coleenp@548 473
kvn@2727 474 // Clone loop predicates. Defined in loopTransform.cpp.
kvn@2877 475 Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
kvn@2727 476 // Create a new if below new_entry for the predicate to be cloned
kvn@2727 477 ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
kvn@2727 478 Deoptimization::DeoptReason reason);
kvn@2727 479
duke@435 480 #ifndef PRODUCT
duke@435 481 protected:
duke@435 482 // Sub-quadratic implementation of VerifyIterativeGVN.
duke@435 483 unsigned long _verify_counter;
duke@435 484 unsigned long _verify_full_passes;
duke@435 485 enum { _verify_window_size = 30 };
duke@435 486 Node* _verify_window[_verify_window_size];
duke@435 487 void verify_step(Node* n);
duke@435 488 #endif
duke@435 489 };
duke@435 490
duke@435 491 //------------------------------PhaseCCP---------------------------------------
duke@435 492 // Phase for performing global Conditional Constant Propagation.
duke@435 493 // Should be replaced with combined CCP & GVN someday.
duke@435 494 class PhaseCCP : public PhaseIterGVN {
duke@435 495 // Non-recursive. Use analysis to transform single Node.
duke@435 496 virtual Node *transform_once( Node *n );
duke@435 497
duke@435 498 public:
duke@435 499 PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
duke@435 500 NOT_PRODUCT( ~PhaseCCP(); )
duke@435 501
duke@435 502 // Worklist algorithm identifies constants
duke@435 503 void analyze();
duke@435 504 // Recursive traversal of program. Used analysis to modify program.
duke@435 505 virtual Node *transform( Node *n );
duke@435 506 // Do any transformation after analysis
duke@435 507 void do_transform();
duke@435 508
duke@435 509 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 510 const Type* limit_type) const;
duke@435 511 // Returns new_type->widen(old_type), which increments the widen bits until
duke@435 512 // giving up with TypeInt::INT or TypeLong::LONG.
duke@435 513 // Result is clipped to limit_type if necessary.
duke@435 514
duke@435 515 #ifndef PRODUCT
duke@435 516 static uint _total_invokes; // For profiling, count invocations
duke@435 517 void inc_invokes() { ++PhaseCCP::_total_invokes; }
duke@435 518
duke@435 519 static uint _total_constants; // For profiling, count constants found
duke@435 520 uint _count_constants;
duke@435 521 void clear_constants() { _count_constants = 0; }
duke@435 522 void inc_constants() { ++_count_constants; }
duke@435 523 uint count_constants() const { return _count_constants; }
duke@435 524
duke@435 525 static void print_statistics();
duke@435 526 #endif
duke@435 527 };
duke@435 528
duke@435 529
duke@435 530 //------------------------------PhasePeephole----------------------------------
duke@435 531 // Phase for performing peephole optimizations on register allocated basic blocks.
duke@435 532 class PhasePeephole : public PhaseTransform {
duke@435 533 PhaseRegAlloc *_regalloc;
duke@435 534 PhaseCFG &_cfg;
duke@435 535 // Recursive traversal of program. Pure function is unused in this phase
duke@435 536 virtual Node *transform( Node *n );
duke@435 537
duke@435 538 public:
duke@435 539 PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
duke@435 540 NOT_PRODUCT( ~PhasePeephole(); )
duke@435 541
duke@435 542 // Do any transformation after analysis
duke@435 543 void do_transform();
duke@435 544
duke@435 545 #ifndef PRODUCT
duke@435 546 static uint _total_peepholes; // For profiling, count peephole rules applied
duke@435 547 uint _count_peepholes;
duke@435 548 void clear_peepholes() { _count_peepholes = 0; }
duke@435 549 void inc_peepholes() { ++_count_peepholes; }
duke@435 550 uint count_peepholes() const { return _count_peepholes; }
duke@435 551
duke@435 552 static void print_statistics();
duke@435 553 #endif
duke@435 554 };
stefank@2314 555
stefank@2314 556 #endif // SHARE_VM_OPTO_PHASEX_HPP

mercurial