src/share/vm/runtime/synchronizer.cpp

Tue, 06 Nov 2012 15:09:37 -0500

author
coleenp
date
Tue, 06 Nov 2012 15:09:37 -0500
changeset 4251
18fb7da42534
parent 4037
da91efe96a93
child 4278
070d523b96a7
permissions
-rw-r--r--

8000725: NPG: method_holder() and pool_holder() and pool_holder field should be InstanceKlass
Summary: Change types of above methods and field to InstanceKlass and remove unneeded casts from the source files.
Reviewed-by: dholmes, coleenp, zgu
Contributed-by: harold.seigel@oracle.com

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/vmSymbols.hpp"
stefank@2314 27 #include "memory/resourceArea.hpp"
stefank@2314 28 #include "oops/markOop.hpp"
stefank@2314 29 #include "oops/oop.inline.hpp"
stefank@2314 30 #include "runtime/biasedLocking.hpp"
stefank@2314 31 #include "runtime/handles.inline.hpp"
stefank@2314 32 #include "runtime/interfaceSupport.hpp"
stefank@2314 33 #include "runtime/mutexLocker.hpp"
stefank@2314 34 #include "runtime/objectMonitor.hpp"
stefank@2314 35 #include "runtime/objectMonitor.inline.hpp"
stefank@2314 36 #include "runtime/osThread.hpp"
stefank@2314 37 #include "runtime/stubRoutines.hpp"
stefank@2314 38 #include "runtime/synchronizer.hpp"
stefank@2314 39 #include "utilities/dtrace.hpp"
stefank@2314 40 #include "utilities/events.hpp"
stefank@2314 41 #include "utilities/preserveException.hpp"
stefank@2314 42 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 43 # include "os_linux.inline.hpp"
stefank@2314 44 # include "thread_linux.inline.hpp"
stefank@2314 45 #endif
stefank@2314 46 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 47 # include "os_solaris.inline.hpp"
stefank@2314 48 # include "thread_solaris.inline.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 51 # include "os_windows.inline.hpp"
stefank@2314 52 # include "thread_windows.inline.hpp"
stefank@2314 53 #endif
never@3156 54 #ifdef TARGET_OS_FAMILY_bsd
never@3156 55 # include "os_bsd.inline.hpp"
never@3156 56 # include "thread_bsd.inline.hpp"
never@3156 57 #endif
duke@435 58
duke@435 59 #if defined(__GNUC__) && !defined(IA64)
duke@435 60 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
duke@435 61 #define ATTR __attribute__((noinline))
duke@435 62 #else
duke@435 63 #define ATTR
duke@435 64 #endif
duke@435 65
duke@435 66 // The "core" versions of monitor enter and exit reside in this file.
duke@435 67 // The interpreter and compilers contain specialized transliterated
duke@435 68 // variants of the enter-exit fast-path operations. See i486.ad fast_lock(),
duke@435 69 // for instance. If you make changes here, make sure to modify the
duke@435 70 // interpreter, and both C1 and C2 fast-path inline locking code emission.
duke@435 71 //
duke@435 72 //
duke@435 73 // -----------------------------------------------------------------------------
duke@435 74
duke@435 75 #ifdef DTRACE_ENABLED
duke@435 76
duke@435 77 // Only bother with this argument setup if dtrace is available
duke@435 78 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
duke@435 79
coleenp@4037 80 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \
duke@435 81 char* bytes = NULL; \
duke@435 82 int len = 0; \
duke@435 83 jlong jtid = SharedRuntime::get_java_tid(thread); \
coleenp@4037 84 Symbol* klassname = ((oop)(obj))->klass()->name(); \
duke@435 85 if (klassname != NULL) { \
duke@435 86 bytes = (char*)klassname->bytes(); \
duke@435 87 len = klassname->utf8_length(); \
duke@435 88 }
duke@435 89
dcubed@3202 90 #ifndef USDT2
dcubed@3202 91 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
dcubed@3202 92 jlong, uintptr_t, char*, int, long);
dcubed@3202 93 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
dcubed@3202 94 jlong, uintptr_t, char*, int);
dcubed@3202 95
coleenp@4037 96 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
duke@435 97 { \
duke@435 98 if (DTraceMonitorProbes) { \
coleenp@4037 99 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
duke@435 100 HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid, \
duke@435 101 (monitor), bytes, len, (millis)); \
duke@435 102 } \
duke@435 103 }
duke@435 104
coleenp@4037 105 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
duke@435 106 { \
duke@435 107 if (DTraceMonitorProbes) { \
coleenp@4037 108 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
duke@435 109 HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid, \
duke@435 110 (uintptr_t)(monitor), bytes, len); \
duke@435 111 } \
duke@435 112 }
duke@435 113
dcubed@3202 114 #else /* USDT2 */
dcubed@3202 115
coleenp@4037 116 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
dcubed@3202 117 { \
dcubed@3202 118 if (DTraceMonitorProbes) { \
coleenp@4037 119 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
dcubed@3202 120 HOTSPOT_MONITOR_WAIT(jtid, \
dcubed@3202 121 (uintptr_t)(monitor), bytes, len, (millis)); \
dcubed@3202 122 } \
dcubed@3202 123 }
dcubed@3202 124
dcubed@3202 125 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_PROBE_WAITED
dcubed@3202 126
coleenp@4037 127 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
dcubed@3202 128 { \
dcubed@3202 129 if (DTraceMonitorProbes) { \
coleenp@4037 130 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
dcubed@3202 131 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \
dcubed@3202 132 (uintptr_t)(monitor), bytes, len); \
dcubed@3202 133 } \
dcubed@3202 134 }
dcubed@3202 135
dcubed@3202 136 #endif /* USDT2 */
duke@435 137 #else // ndef DTRACE_ENABLED
duke@435 138
coleenp@4037 139 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;}
coleenp@4037 140 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;}
duke@435 141
duke@435 142 #endif // ndef DTRACE_ENABLED
duke@435 143
acorn@2233 144 // This exists only as a workaround of dtrace bug 6254741
acorn@2233 145 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
acorn@2233 146 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
acorn@2233 147 return 0;
acorn@2233 148 }
duke@435 149
acorn@2233 150 #define NINFLATIONLOCKS 256
acorn@2233 151 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
acorn@2233 152
acorn@2233 153 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
acorn@2233 154 ObjectMonitor * volatile ObjectSynchronizer::gFreeList = NULL ;
acorn@2233 155 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList = NULL ;
acorn@2233 156 int ObjectSynchronizer::gOmInUseCount = 0;
acorn@2233 157 static volatile intptr_t ListLock = 0 ; // protects global monitor free-list cache
acorn@2233 158 static volatile int MonitorFreeCount = 0 ; // # on gFreeList
acorn@2233 159 static volatile int MonitorPopulation = 0 ; // # Extant -- in circulation
acorn@2233 160 #define CHAINMARKER ((oop)-1)
acorn@2233 161
acorn@2233 162 // -----------------------------------------------------------------------------
acorn@2233 163 // Fast Monitor Enter/Exit
acorn@2233 164 // This the fast monitor enter. The interpreter and compiler use
acorn@2233 165 // some assembly copies of this code. Make sure update those code
acorn@2233 166 // if the following function is changed. The implementation is
acorn@2233 167 // extremely sensitive to race condition. Be careful.
acorn@2233 168
acorn@2233 169 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
acorn@2233 170 if (UseBiasedLocking) {
acorn@2233 171 if (!SafepointSynchronize::is_at_safepoint()) {
acorn@2233 172 BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
acorn@2233 173 if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
acorn@2233 174 return;
acorn@2233 175 }
acorn@2233 176 } else {
acorn@2233 177 assert(!attempt_rebias, "can not rebias toward VM thread");
acorn@2233 178 BiasedLocking::revoke_at_safepoint(obj);
acorn@2233 179 }
acorn@2233 180 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 181 }
acorn@2233 182
acorn@2233 183 slow_enter (obj, lock, THREAD) ;
acorn@2233 184 }
acorn@2233 185
acorn@2233 186 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
acorn@2233 187 assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
acorn@2233 188 // if displaced header is null, the previous enter is recursive enter, no-op
acorn@2233 189 markOop dhw = lock->displaced_header();
acorn@2233 190 markOop mark ;
acorn@2233 191 if (dhw == NULL) {
acorn@2233 192 // Recursive stack-lock.
acorn@2233 193 // Diagnostics -- Could be: stack-locked, inflating, inflated.
acorn@2233 194 mark = object->mark() ;
acorn@2233 195 assert (!mark->is_neutral(), "invariant") ;
acorn@2233 196 if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
acorn@2233 197 assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
acorn@2233 198 }
acorn@2233 199 if (mark->has_monitor()) {
acorn@2233 200 ObjectMonitor * m = mark->monitor() ;
acorn@2233 201 assert(((oop)(m->object()))->mark() == mark, "invariant") ;
acorn@2233 202 assert(m->is_entered(THREAD), "invariant") ;
acorn@2233 203 }
acorn@2233 204 return ;
duke@435 205 }
duke@435 206
acorn@2233 207 mark = object->mark() ;
acorn@2233 208
acorn@2233 209 // If the object is stack-locked by the current thread, try to
acorn@2233 210 // swing the displaced header from the box back to the mark.
acorn@2233 211 if (mark == (markOop) lock) {
acorn@2233 212 assert (dhw->is_neutral(), "invariant") ;
acorn@2233 213 if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
acorn@2233 214 TEVENT (fast_exit: release stacklock) ;
acorn@2233 215 return;
acorn@2233 216 }
duke@435 217 }
duke@435 218
acorn@2233 219 ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
acorn@2233 220 }
acorn@2233 221
acorn@2233 222 // -----------------------------------------------------------------------------
acorn@2233 223 // Interpreter/Compiler Slow Case
acorn@2233 224 // This routine is used to handle interpreter/compiler slow case
acorn@2233 225 // We don't need to use fast path here, because it must have been
acorn@2233 226 // failed in the interpreter/compiler code.
acorn@2233 227 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
acorn@2233 228 markOop mark = obj->mark();
acorn@2233 229 assert(!mark->has_bias_pattern(), "should not see bias pattern here");
acorn@2233 230
acorn@2233 231 if (mark->is_neutral()) {
acorn@2233 232 // Anticipate successful CAS -- the ST of the displaced mark must
acorn@2233 233 // be visible <= the ST performed by the CAS.
acorn@2233 234 lock->set_displaced_header(mark);
acorn@2233 235 if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
acorn@2233 236 TEVENT (slow_enter: release stacklock) ;
acorn@2233 237 return ;
acorn@2233 238 }
acorn@2233 239 // Fall through to inflate() ...
acorn@2233 240 } else
acorn@2233 241 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 242 assert(lock != mark->locker(), "must not re-lock the same lock");
acorn@2233 243 assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
acorn@2233 244 lock->set_displaced_header(NULL);
acorn@2233 245 return;
duke@435 246 }
duke@435 247
acorn@2233 248 #if 0
acorn@2233 249 // The following optimization isn't particularly useful.
acorn@2233 250 if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
acorn@2233 251 lock->set_displaced_header (NULL) ;
acorn@2233 252 return ;
acorn@2233 253 }
acorn@2233 254 #endif
duke@435 255
acorn@2233 256 // The object header will never be displaced to this lock,
acorn@2233 257 // so it does not matter what the value is, except that it
acorn@2233 258 // must be non-zero to avoid looking like a re-entrant lock,
acorn@2233 259 // and must not look locked either.
acorn@2233 260 lock->set_displaced_header(markOopDesc::unused_mark());
acorn@2233 261 ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
acorn@2233 262 }
duke@435 263
acorn@2233 264 // This routine is used to handle interpreter/compiler slow case
acorn@2233 265 // We don't need to use fast path here, because it must have
acorn@2233 266 // failed in the interpreter/compiler code. Simply use the heavy
acorn@2233 267 // weight monitor should be ok, unless someone find otherwise.
acorn@2233 268 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
acorn@2233 269 fast_exit (object, lock, THREAD) ;
acorn@2233 270 }
duke@435 271
acorn@2233 272 // -----------------------------------------------------------------------------
acorn@2233 273 // Class Loader support to workaround deadlocks on the class loader lock objects
acorn@2233 274 // Also used by GC
acorn@2233 275 // complete_exit()/reenter() are used to wait on a nested lock
acorn@2233 276 // i.e. to give up an outer lock completely and then re-enter
acorn@2233 277 // Used when holding nested locks - lock acquisition order: lock1 then lock2
acorn@2233 278 // 1) complete_exit lock1 - saving recursion count
acorn@2233 279 // 2) wait on lock2
acorn@2233 280 // 3) when notified on lock2, unlock lock2
acorn@2233 281 // 4) reenter lock1 with original recursion count
acorn@2233 282 // 5) lock lock2
acorn@2233 283 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
acorn@2233 284 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
acorn@2233 285 TEVENT (complete_exit) ;
acorn@2233 286 if (UseBiasedLocking) {
acorn@2233 287 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 288 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 289 }
duke@435 290
acorn@2233 291 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
duke@435 292
acorn@2233 293 return monitor->complete_exit(THREAD);
acorn@2233 294 }
acorn@2233 295
acorn@2233 296 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
acorn@2233 297 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
acorn@2233 298 TEVENT (reenter) ;
acorn@2233 299 if (UseBiasedLocking) {
acorn@2233 300 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 301 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 302 }
acorn@2233 303
acorn@2233 304 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
acorn@2233 305
acorn@2233 306 monitor->reenter(recursion, THREAD);
acorn@2233 307 }
acorn@2233 308 // -----------------------------------------------------------------------------
acorn@2233 309 // JNI locks on java objects
acorn@2233 310 // NOTE: must use heavy weight monitor to handle jni monitor enter
acorn@2233 311 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
acorn@2233 312 // the current locking is from JNI instead of Java code
acorn@2233 313 TEVENT (jni_enter) ;
acorn@2233 314 if (UseBiasedLocking) {
acorn@2233 315 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 316 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 317 }
acorn@2233 318 THREAD->set_current_pending_monitor_is_from_java(false);
acorn@2233 319 ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
acorn@2233 320 THREAD->set_current_pending_monitor_is_from_java(true);
acorn@2233 321 }
acorn@2233 322
acorn@2233 323 // NOTE: must use heavy weight monitor to handle jni monitor enter
acorn@2233 324 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
acorn@2233 325 if (UseBiasedLocking) {
acorn@2233 326 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 327 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 328 }
acorn@2233 329
acorn@2233 330 ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
acorn@2233 331 return monitor->try_enter(THREAD);
acorn@2233 332 }
acorn@2233 333
acorn@2233 334
acorn@2233 335 // NOTE: must use heavy weight monitor to handle jni monitor exit
acorn@2233 336 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
acorn@2233 337 TEVENT (jni_exit) ;
acorn@2233 338 if (UseBiasedLocking) {
acorn@2233 339 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 340 }
acorn@2233 341 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 342
acorn@2233 343 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
acorn@2233 344 // If this thread has locked the object, exit the monitor. Note: can't use
acorn@2233 345 // monitor->check(CHECK); must exit even if an exception is pending.
acorn@2233 346 if (monitor->check(THREAD)) {
acorn@2233 347 monitor->exit(THREAD);
acorn@2233 348 }
acorn@2233 349 }
acorn@2233 350
acorn@2233 351 // -----------------------------------------------------------------------------
acorn@2233 352 // Internal VM locks on java objects
acorn@2233 353 // standard constructor, allows locking failures
acorn@2233 354 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
acorn@2233 355 _dolock = doLock;
acorn@2233 356 _thread = thread;
acorn@2233 357 debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
acorn@2233 358 _obj = obj;
acorn@2233 359
acorn@2233 360 if (_dolock) {
acorn@2233 361 TEVENT (ObjectLocker) ;
acorn@2233 362
acorn@2233 363 ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
acorn@2233 364 }
acorn@2233 365 }
acorn@2233 366
acorn@2233 367 ObjectLocker::~ObjectLocker() {
acorn@2233 368 if (_dolock) {
acorn@2233 369 ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
acorn@2233 370 }
acorn@2233 371 }
acorn@2233 372
acorn@2233 373
acorn@2233 374 // -----------------------------------------------------------------------------
acorn@2233 375 // Wait/Notify/NotifyAll
acorn@2233 376 // NOTE: must use heavy weight monitor to handle wait()
acorn@2233 377 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
acorn@2233 378 if (UseBiasedLocking) {
acorn@2233 379 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 380 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 381 }
acorn@2233 382 if (millis < 0) {
acorn@2233 383 TEVENT (wait - throw IAX) ;
acorn@2233 384 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
acorn@2233 385 }
acorn@2233 386 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
acorn@2233 387 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
acorn@2233 388 monitor->wait(millis, true, THREAD);
acorn@2233 389
acorn@2233 390 /* This dummy call is in place to get around dtrace bug 6254741. Once
acorn@2233 391 that's fixed we can uncomment the following line and remove the call */
acorn@2233 392 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
acorn@2233 393 dtrace_waited_probe(monitor, obj, THREAD);
acorn@2233 394 }
acorn@2233 395
acorn@2233 396 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
acorn@2233 397 if (UseBiasedLocking) {
acorn@2233 398 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 399 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 400 }
acorn@2233 401 if (millis < 0) {
acorn@2233 402 TEVENT (wait - throw IAX) ;
acorn@2233 403 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
acorn@2233 404 }
acorn@2233 405 ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
acorn@2233 406 }
acorn@2233 407
acorn@2233 408 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
acorn@2233 409 if (UseBiasedLocking) {
acorn@2233 410 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 411 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 412 }
acorn@2233 413
acorn@2233 414 markOop mark = obj->mark();
acorn@2233 415 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 416 return;
acorn@2233 417 }
acorn@2233 418 ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
acorn@2233 419 }
acorn@2233 420
acorn@2233 421 // NOTE: see comment of notify()
acorn@2233 422 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
acorn@2233 423 if (UseBiasedLocking) {
acorn@2233 424 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 425 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 426 }
acorn@2233 427
acorn@2233 428 markOop mark = obj->mark();
acorn@2233 429 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 430 return;
acorn@2233 431 }
acorn@2233 432 ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
acorn@2233 433 }
acorn@2233 434
acorn@2233 435 // -----------------------------------------------------------------------------
acorn@2233 436 // Hash Code handling
acorn@2233 437 //
duke@435 438 // Performance concern:
duke@435 439 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
duke@435 440 // OrderAccess::Dummy variable. This store is unnecessary for correctness.
duke@435 441 // Many threads STing into a common location causes considerable cache migration
duke@435 442 // or "sloshing" on large SMP system. As such, I avoid using OrderAccess::storestore()
duke@435 443 // until it's repaired. In some cases OrderAccess::fence() -- which incurs local
duke@435 444 // latency on the executing processor -- is a better choice as it scales on SMP
duke@435 445 // systems. See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
duke@435 446 // discussion of coherency costs. Note that all our current reference platforms
duke@435 447 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
duke@435 448 //
duke@435 449 // As a general policy we use "volatile" to control compiler-based reordering
duke@435 450 // and explicit fences (barriers) to control for architectural reordering performed
duke@435 451 // by the CPU(s) or platform.
duke@435 452
duke@435 453 static int MBFence (int x) { OrderAccess::fence(); return x; }
duke@435 454
duke@435 455 struct SharedGlobals {
duke@435 456 // These are highly shared mostly-read variables.
duke@435 457 // To avoid false-sharing they need to be the sole occupants of a $ line.
duke@435 458 double padPrefix [8];
duke@435 459 volatile int stwRandom ;
duke@435 460 volatile int stwCycle ;
duke@435 461
duke@435 462 // Hot RW variables -- Sequester to avoid false-sharing
duke@435 463 double padSuffix [16];
duke@435 464 volatile int hcSequence ;
duke@435 465 double padFinal [8] ;
duke@435 466 } ;
duke@435 467
duke@435 468 static SharedGlobals GVars ;
acorn@1942 469 static int MonitorScavengeThreshold = 1000000 ;
acorn@1942 470 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
duke@435 471
acorn@2233 472 static markOop ReadStableMark (oop obj) {
acorn@2233 473 markOop mark = obj->mark() ;
acorn@2233 474 if (!mark->is_being_inflated()) {
acorn@2233 475 return mark ; // normal fast-path return
acorn@2233 476 }
duke@435 477
acorn@2233 478 int its = 0 ;
acorn@2233 479 for (;;) {
acorn@2233 480 markOop mark = obj->mark() ;
acorn@2233 481 if (!mark->is_being_inflated()) {
acorn@2233 482 return mark ; // normal fast-path return
acorn@2233 483 }
duke@435 484
acorn@2233 485 // The object is being inflated by some other thread.
acorn@2233 486 // The caller of ReadStableMark() must wait for inflation to complete.
acorn@2233 487 // Avoid live-lock
acorn@2233 488 // TODO: consider calling SafepointSynchronize::do_call_back() while
acorn@2233 489 // spinning to see if there's a safepoint pending. If so, immediately
acorn@2233 490 // yielding or blocking would be appropriate. Avoid spinning while
acorn@2233 491 // there is a safepoint pending.
acorn@2233 492 // TODO: add inflation contention performance counters.
acorn@2233 493 // TODO: restrict the aggregate number of spinners.
duke@435 494
acorn@2233 495 ++its ;
acorn@2233 496 if (its > 10000 || !os::is_MP()) {
acorn@2233 497 if (its & 1) {
acorn@2233 498 os::NakedYield() ;
acorn@2233 499 TEVENT (Inflate: INFLATING - yield) ;
acorn@2233 500 } else {
acorn@2233 501 // Note that the following code attenuates the livelock problem but is not
acorn@2233 502 // a complete remedy. A more complete solution would require that the inflating
acorn@2233 503 // thread hold the associated inflation lock. The following code simply restricts
acorn@2233 504 // the number of spinners to at most one. We'll have N-2 threads blocked
acorn@2233 505 // on the inflationlock, 1 thread holding the inflation lock and using
acorn@2233 506 // a yield/park strategy, and 1 thread in the midst of inflation.
acorn@2233 507 // A more refined approach would be to change the encoding of INFLATING
acorn@2233 508 // to allow encapsulation of a native thread pointer. Threads waiting for
acorn@2233 509 // inflation to complete would use CAS to push themselves onto a singly linked
acorn@2233 510 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag
acorn@2233 511 // and calling park(). When inflation was complete the thread that accomplished inflation
acorn@2233 512 // would detach the list and set the markword to inflated with a single CAS and
acorn@2233 513 // then for each thread on the list, set the flag and unpark() the thread.
acorn@2233 514 // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
acorn@2233 515 // wakes at most one thread whereas we need to wake the entire list.
acorn@2233 516 int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
acorn@2233 517 int YieldThenBlock = 0 ;
acorn@2233 518 assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
acorn@2233 519 assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
acorn@2233 520 Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
acorn@2233 521 while (obj->mark() == markOopDesc::INFLATING()) {
acorn@2233 522 // Beware: NakedYield() is advisory and has almost no effect on some platforms
acorn@2233 523 // so we periodically call Self->_ParkEvent->park(1).
acorn@2233 524 // We use a mixed spin/yield/block mechanism.
acorn@2233 525 if ((YieldThenBlock++) >= 16) {
acorn@2233 526 Thread::current()->_ParkEvent->park(1) ;
acorn@2233 527 } else {
acorn@2233 528 os::NakedYield() ;
acorn@2233 529 }
acorn@2233 530 }
acorn@2233 531 Thread::muxRelease (InflationLocks + ix ) ;
acorn@2233 532 TEVENT (Inflate: INFLATING - yield/park) ;
acorn@2233 533 }
acorn@2233 534 } else {
acorn@2233 535 SpinPause() ; // SMP-polite spinning
acorn@2233 536 }
acorn@2233 537 }
acorn@2233 538 }
duke@435 539
duke@435 540 // hashCode() generation :
duke@435 541 //
duke@435 542 // Possibilities:
duke@435 543 // * MD5Digest of {obj,stwRandom}
duke@435 544 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
duke@435 545 // * A DES- or AES-style SBox[] mechanism
duke@435 546 // * One of the Phi-based schemes, such as:
duke@435 547 // 2654435761 = 2^32 * Phi (golden ratio)
duke@435 548 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
duke@435 549 // * A variation of Marsaglia's shift-xor RNG scheme.
duke@435 550 // * (obj ^ stwRandom) is appealing, but can result
duke@435 551 // in undesirable regularity in the hashCode values of adjacent objects
duke@435 552 // (objects allocated back-to-back, in particular). This could potentially
duke@435 553 // result in hashtable collisions and reduced hashtable efficiency.
duke@435 554 // There are simple ways to "diffuse" the middle address bits over the
duke@435 555 // generated hashCode values:
duke@435 556 //
duke@435 557
duke@435 558 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
duke@435 559 intptr_t value = 0 ;
duke@435 560 if (hashCode == 0) {
duke@435 561 // This form uses an unguarded global Park-Miller RNG,
duke@435 562 // so it's possible for two threads to race and generate the same RNG.
duke@435 563 // On MP system we'll have lots of RW access to a global, so the
duke@435 564 // mechanism induces lots of coherency traffic.
duke@435 565 value = os::random() ;
duke@435 566 } else
duke@435 567 if (hashCode == 1) {
duke@435 568 // This variation has the property of being stable (idempotent)
duke@435 569 // between STW operations. This can be useful in some of the 1-0
duke@435 570 // synchronization schemes.
duke@435 571 intptr_t addrBits = intptr_t(obj) >> 3 ;
duke@435 572 value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
duke@435 573 } else
duke@435 574 if (hashCode == 2) {
duke@435 575 value = 1 ; // for sensitivity testing
duke@435 576 } else
duke@435 577 if (hashCode == 3) {
duke@435 578 value = ++GVars.hcSequence ;
duke@435 579 } else
duke@435 580 if (hashCode == 4) {
duke@435 581 value = intptr_t(obj) ;
duke@435 582 } else {
duke@435 583 // Marsaglia's xor-shift scheme with thread-specific state
duke@435 584 // This is probably the best overall implementation -- we'll
duke@435 585 // likely make this the default in future releases.
duke@435 586 unsigned t = Self->_hashStateX ;
duke@435 587 t ^= (t << 11) ;
duke@435 588 Self->_hashStateX = Self->_hashStateY ;
duke@435 589 Self->_hashStateY = Self->_hashStateZ ;
duke@435 590 Self->_hashStateZ = Self->_hashStateW ;
duke@435 591 unsigned v = Self->_hashStateW ;
duke@435 592 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
duke@435 593 Self->_hashStateW = v ;
duke@435 594 value = v ;
duke@435 595 }
duke@435 596
duke@435 597 value &= markOopDesc::hash_mask;
duke@435 598 if (value == 0) value = 0xBAD ;
duke@435 599 assert (value != markOopDesc::no_hash, "invariant") ;
duke@435 600 TEVENT (hashCode: GENERATE) ;
duke@435 601 return value;
duke@435 602 }
acorn@2233 603 //
acorn@2233 604 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
acorn@2233 605 if (UseBiasedLocking) {
acorn@2233 606 // NOTE: many places throughout the JVM do not expect a safepoint
acorn@2233 607 // to be taken here, in particular most operations on perm gen
acorn@2233 608 // objects. However, we only ever bias Java instances and all of
acorn@2233 609 // the call sites of identity_hash that might revoke biases have
acorn@2233 610 // been checked to make sure they can handle a safepoint. The
acorn@2233 611 // added check of the bias pattern is to avoid useless calls to
acorn@2233 612 // thread-local storage.
acorn@2233 613 if (obj->mark()->has_bias_pattern()) {
acorn@2233 614 // Box and unbox the raw reference just in case we cause a STW safepoint.
acorn@2233 615 Handle hobj (Self, obj) ;
acorn@2233 616 // Relaxing assertion for bug 6320749.
acorn@2233 617 assert (Universe::verify_in_progress() ||
acorn@2233 618 !SafepointSynchronize::is_at_safepoint(),
acorn@2233 619 "biases should not be seen by VM thread here");
acorn@2233 620 BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
acorn@2233 621 obj = hobj() ;
acorn@2233 622 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 623 }
acorn@2233 624 }
duke@435 625
acorn@2233 626 // hashCode() is a heap mutator ...
acorn@2233 627 // Relaxing assertion for bug 6320749.
acorn@2233 628 assert (Universe::verify_in_progress() ||
acorn@2233 629 !SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 630 assert (Universe::verify_in_progress() ||
acorn@2233 631 Self->is_Java_thread() , "invariant") ;
acorn@2233 632 assert (Universe::verify_in_progress() ||
acorn@2233 633 ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
acorn@2233 634
acorn@2233 635 ObjectMonitor* monitor = NULL;
acorn@2233 636 markOop temp, test;
acorn@2233 637 intptr_t hash;
acorn@2233 638 markOop mark = ReadStableMark (obj);
acorn@2233 639
acorn@2233 640 // object should remain ineligible for biased locking
acorn@2233 641 assert (!mark->has_bias_pattern(), "invariant") ;
acorn@2233 642
acorn@2233 643 if (mark->is_neutral()) {
acorn@2233 644 hash = mark->hash(); // this is a normal header
acorn@2233 645 if (hash) { // if it has hash, just return it
acorn@2233 646 return hash;
acorn@2233 647 }
acorn@2233 648 hash = get_next_hash(Self, obj); // allocate a new hash code
acorn@2233 649 temp = mark->copy_set_hash(hash); // merge the hash code into header
acorn@2233 650 // use (machine word version) atomic operation to install the hash
acorn@2233 651 test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
acorn@2233 652 if (test == mark) {
acorn@2233 653 return hash;
acorn@2233 654 }
acorn@2233 655 // If atomic operation failed, we must inflate the header
acorn@2233 656 // into heavy weight monitor. We could add more code here
acorn@2233 657 // for fast path, but it does not worth the complexity.
acorn@2233 658 } else if (mark->has_monitor()) {
acorn@2233 659 monitor = mark->monitor();
acorn@2233 660 temp = monitor->header();
acorn@2233 661 assert (temp->is_neutral(), "invariant") ;
acorn@2233 662 hash = temp->hash();
acorn@2233 663 if (hash) {
acorn@2233 664 return hash;
acorn@2233 665 }
acorn@2233 666 // Skip to the following code to reduce code size
acorn@2233 667 } else if (Self->is_lock_owned((address)mark->locker())) {
acorn@2233 668 temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
acorn@2233 669 assert (temp->is_neutral(), "invariant") ;
acorn@2233 670 hash = temp->hash(); // by current thread, check if the displaced
acorn@2233 671 if (hash) { // header contains hash code
acorn@2233 672 return hash;
acorn@2233 673 }
acorn@2233 674 // WARNING:
acorn@2233 675 // The displaced header is strictly immutable.
acorn@2233 676 // It can NOT be changed in ANY cases. So we have
acorn@2233 677 // to inflate the header into heavyweight monitor
acorn@2233 678 // even the current thread owns the lock. The reason
acorn@2233 679 // is the BasicLock (stack slot) will be asynchronously
acorn@2233 680 // read by other threads during the inflate() function.
acorn@2233 681 // Any change to stack may not propagate to other threads
acorn@2233 682 // correctly.
acorn@2233 683 }
acorn@2233 684
acorn@2233 685 // Inflate the monitor to set hash code
acorn@2233 686 monitor = ObjectSynchronizer::inflate(Self, obj);
acorn@2233 687 // Load displaced header and check it has hash code
acorn@2233 688 mark = monitor->header();
acorn@2233 689 assert (mark->is_neutral(), "invariant") ;
acorn@2233 690 hash = mark->hash();
acorn@2233 691 if (hash == 0) {
acorn@2233 692 hash = get_next_hash(Self, obj);
acorn@2233 693 temp = mark->copy_set_hash(hash); // merge hash code into header
acorn@2233 694 assert (temp->is_neutral(), "invariant") ;
acorn@2233 695 test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
acorn@2233 696 if (test != mark) {
acorn@2233 697 // The only update to the header in the monitor (outside GC)
acorn@2233 698 // is install the hash code. If someone add new usage of
acorn@2233 699 // displaced header, please update this code
acorn@2233 700 hash = test->hash();
acorn@2233 701 assert (test->is_neutral(), "invariant") ;
acorn@2233 702 assert (hash != 0, "Trivial unexpected object/monitor header usage.");
acorn@2233 703 }
acorn@2233 704 }
acorn@2233 705 // We finally get the hash
acorn@2233 706 return hash;
duke@435 707 }
duke@435 708
acorn@2233 709 // Deprecated -- use FastHashCode() instead.
duke@435 710
acorn@2233 711 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
acorn@2233 712 return FastHashCode (Thread::current(), obj()) ;
duke@435 713 }
duke@435 714
duke@435 715
acorn@2233 716 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
acorn@2233 717 Handle h_obj) {
acorn@2233 718 if (UseBiasedLocking) {
acorn@2233 719 BiasedLocking::revoke_and_rebias(h_obj, false, thread);
acorn@2233 720 assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 721 }
duke@435 722
acorn@2233 723 assert(thread == JavaThread::current(), "Can only be called on current thread");
acorn@2233 724 oop obj = h_obj();
duke@435 725
acorn@2233 726 markOop mark = ReadStableMark (obj) ;
acorn@2233 727
acorn@2233 728 // Uncontended case, header points to stack
acorn@2233 729 if (mark->has_locker()) {
acorn@2233 730 return thread->is_lock_owned((address)mark->locker());
acorn@2233 731 }
acorn@2233 732 // Contended case, header points to ObjectMonitor (tagged pointer)
acorn@2233 733 if (mark->has_monitor()) {
acorn@2233 734 ObjectMonitor* monitor = mark->monitor();
acorn@2233 735 return monitor->is_entered(thread) != 0 ;
acorn@2233 736 }
acorn@2233 737 // Unlocked case, header in place
acorn@2233 738 assert(mark->is_neutral(), "sanity check");
acorn@2233 739 return false;
acorn@2233 740 }
acorn@2233 741
acorn@2233 742 // Be aware of this method could revoke bias of the lock object.
acorn@2233 743 // This method querys the ownership of the lock handle specified by 'h_obj'.
acorn@2233 744 // If the current thread owns the lock, it returns owner_self. If no
acorn@2233 745 // thread owns the lock, it returns owner_none. Otherwise, it will return
acorn@2233 746 // ower_other.
acorn@2233 747 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
acorn@2233 748 (JavaThread *self, Handle h_obj) {
acorn@2233 749 // The caller must beware this method can revoke bias, and
acorn@2233 750 // revocation can result in a safepoint.
acorn@2233 751 assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 752 assert (self->thread_state() != _thread_blocked , "invariant") ;
acorn@2233 753
acorn@2233 754 // Possible mark states: neutral, biased, stack-locked, inflated
acorn@2233 755
acorn@2233 756 if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
acorn@2233 757 // CASE: biased
acorn@2233 758 BiasedLocking::revoke_and_rebias(h_obj, false, self);
acorn@2233 759 assert(!h_obj->mark()->has_bias_pattern(),
acorn@2233 760 "biases should be revoked by now");
acorn@2233 761 }
acorn@2233 762
acorn@2233 763 assert(self == JavaThread::current(), "Can only be called on current thread");
acorn@2233 764 oop obj = h_obj();
acorn@2233 765 markOop mark = ReadStableMark (obj) ;
acorn@2233 766
acorn@2233 767 // CASE: stack-locked. Mark points to a BasicLock on the owner's stack.
acorn@2233 768 if (mark->has_locker()) {
acorn@2233 769 return self->is_lock_owned((address)mark->locker()) ?
acorn@2233 770 owner_self : owner_other;
acorn@2233 771 }
acorn@2233 772
acorn@2233 773 // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
acorn@2233 774 // The Object:ObjectMonitor relationship is stable as long as we're
acorn@2233 775 // not at a safepoint.
acorn@2233 776 if (mark->has_monitor()) {
acorn@2233 777 void * owner = mark->monitor()->_owner ;
acorn@2233 778 if (owner == NULL) return owner_none ;
acorn@2233 779 return (owner == self ||
acorn@2233 780 self->is_lock_owned((address)owner)) ? owner_self : owner_other;
acorn@2233 781 }
acorn@2233 782
acorn@2233 783 // CASE: neutral
acorn@2233 784 assert(mark->is_neutral(), "sanity check");
acorn@2233 785 return owner_none ; // it's unlocked
acorn@2233 786 }
acorn@2233 787
acorn@2233 788 // FIXME: jvmti should call this
acorn@2233 789 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
acorn@2233 790 if (UseBiasedLocking) {
acorn@2233 791 if (SafepointSynchronize::is_at_safepoint()) {
acorn@2233 792 BiasedLocking::revoke_at_safepoint(h_obj);
acorn@2233 793 } else {
acorn@2233 794 BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
acorn@2233 795 }
acorn@2233 796 assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 797 }
acorn@2233 798
acorn@2233 799 oop obj = h_obj();
acorn@2233 800 address owner = NULL;
acorn@2233 801
acorn@2233 802 markOop mark = ReadStableMark (obj) ;
acorn@2233 803
acorn@2233 804 // Uncontended case, header points to stack
acorn@2233 805 if (mark->has_locker()) {
acorn@2233 806 owner = (address) mark->locker();
acorn@2233 807 }
acorn@2233 808
acorn@2233 809 // Contended case, header points to ObjectMonitor (tagged pointer)
acorn@2233 810 if (mark->has_monitor()) {
acorn@2233 811 ObjectMonitor* monitor = mark->monitor();
acorn@2233 812 assert(monitor != NULL, "monitor should be non-null");
acorn@2233 813 owner = (address) monitor->owner();
acorn@2233 814 }
acorn@2233 815
acorn@2233 816 if (owner != NULL) {
acorn@2233 817 return Threads::owning_thread_from_monitor_owner(owner, doLock);
acorn@2233 818 }
acorn@2233 819
acorn@2233 820 // Unlocked case, header in place
acorn@2233 821 // Cannot have assertion since this object may have been
acorn@2233 822 // locked by another thread when reaching here.
acorn@2233 823 // assert(mark->is_neutral(), "sanity check");
acorn@2233 824
acorn@2233 825 return NULL;
acorn@2233 826 }
acorn@2233 827 // Visitors ...
acorn@2233 828
acorn@2233 829 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
acorn@2233 830 ObjectMonitor* block = gBlockList;
acorn@2233 831 ObjectMonitor* mid;
acorn@2233 832 while (block) {
acorn@2233 833 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 834 for (int i = _BLOCKSIZE - 1; i > 0; i--) {
acorn@2233 835 mid = block + i;
acorn@2233 836 oop object = (oop) mid->object();
acorn@2233 837 if (object != NULL) {
acorn@2233 838 closure->do_monitor(mid);
acorn@2233 839 }
acorn@2233 840 }
acorn@2233 841 block = (ObjectMonitor*) block->FreeNext;
duke@435 842 }
duke@435 843 }
duke@435 844
acorn@2233 845 // Get the next block in the block list.
acorn@2233 846 static inline ObjectMonitor* next(ObjectMonitor* block) {
acorn@2233 847 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 848 block = block->FreeNext ;
acorn@2233 849 assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
acorn@2233 850 return block;
duke@435 851 }
duke@435 852
duke@435 853
acorn@2233 854 void ObjectSynchronizer::oops_do(OopClosure* f) {
acorn@2233 855 assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
acorn@2233 856 for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
acorn@2233 857 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 858 for (int i = 1; i < _BLOCKSIZE; i++) {
acorn@2233 859 ObjectMonitor* mid = &block[i];
acorn@2233 860 if (mid->object() != NULL) {
acorn@2233 861 f->do_oop((oop*)mid->object_addr());
duke@435 862 }
duke@435 863 }
duke@435 864 }
duke@435 865 }
duke@435 866
duke@435 867
acorn@2233 868 // -----------------------------------------------------------------------------
duke@435 869 // ObjectMonitor Lifecycle
duke@435 870 // -----------------------
duke@435 871 // Inflation unlinks monitors from the global gFreeList and
duke@435 872 // associates them with objects. Deflation -- which occurs at
duke@435 873 // STW-time -- disassociates idle monitors from objects. Such
duke@435 874 // scavenged monitors are returned to the gFreeList.
duke@435 875 //
duke@435 876 // The global list is protected by ListLock. All the critical sections
duke@435 877 // are short and operate in constant-time.
duke@435 878 //
duke@435 879 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
duke@435 880 //
duke@435 881 // Lifecycle:
duke@435 882 // -- unassigned and on the global free list
duke@435 883 // -- unassigned and on a thread's private omFreeList
duke@435 884 // -- assigned to an object. The object is inflated and the mark refers
duke@435 885 // to the objectmonitor.
duke@435 886 //
duke@435 887
duke@435 888
acorn@1942 889 // Constraining monitor pool growth via MonitorBound ...
acorn@1942 890 //
acorn@1942 891 // The monitor pool is grow-only. We scavenge at STW safepoint-time, but the
acorn@1942 892 // the rate of scavenging is driven primarily by GC. As such, we can find
acorn@1942 893 // an inordinate number of monitors in circulation.
acorn@1942 894 // To avoid that scenario we can artificially induce a STW safepoint
acorn@1942 895 // if the pool appears to be growing past some reasonable bound.
acorn@1942 896 // Generally we favor time in space-time tradeoffs, but as there's no
acorn@1942 897 // natural back-pressure on the # of extant monitors we need to impose some
acorn@1942 898 // type of limit. Beware that if MonitorBound is set to too low a value
acorn@1942 899 // we could just loop. In addition, if MonitorBound is set to a low value
acorn@1942 900 // we'll incur more safepoints, which are harmful to performance.
acorn@1942 901 // See also: GuaranteedSafepointInterval
acorn@1942 902 //
acorn@1942 903 // The current implementation uses asynchronous VM operations.
acorn@1942 904 //
acorn@1942 905
acorn@1942 906 static void InduceScavenge (Thread * Self, const char * Whence) {
acorn@1942 907 // Induce STW safepoint to trim monitors
acorn@1942 908 // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
acorn@1942 909 // More precisely, trigger an asynchronous STW safepoint as the number
acorn@1942 910 // of active monitors passes the specified threshold.
acorn@1942 911 // TODO: assert thread state is reasonable
acorn@1942 912
acorn@1942 913 if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
acorn@2233 914 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 915 ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
acorn@1942 916 ::fflush(stdout) ;
acorn@1942 917 }
acorn@1942 918 // Induce a 'null' safepoint to scavenge monitors
acorn@1942 919 // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
acorn@1942 920 // to the VMthread and have a lifespan longer than that of this activation record.
acorn@1942 921 // The VMThread will delete the op when completed.
acorn@1942 922 VMThread::execute (new VM_ForceAsyncSafepoint()) ;
acorn@1942 923
acorn@2233 924 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 925 ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
acorn@1942 926 ::fflush(stdout) ;
acorn@1942 927 }
acorn@1942 928 }
acorn@1942 929 }
acorn@1995 930 /* Too slow for general assert or debug
acorn@1995 931 void ObjectSynchronizer::verifyInUse (Thread *Self) {
acorn@1995 932 ObjectMonitor* mid;
acorn@1995 933 int inusetally = 0;
acorn@1995 934 for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
acorn@1995 935 inusetally ++;
acorn@1995 936 }
acorn@1995 937 assert(inusetally == Self->omInUseCount, "inuse count off");
acorn@1995 938
acorn@1995 939 int freetally = 0;
acorn@1995 940 for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
acorn@1995 941 freetally ++;
acorn@1995 942 }
acorn@1995 943 assert(freetally == Self->omFreeCount, "free count off");
acorn@1995 944 }
acorn@1995 945 */
duke@435 946 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
duke@435 947 // A large MAXPRIVATE value reduces both list lock contention
duke@435 948 // and list coherency traffic, but also tends to increase the
duke@435 949 // number of objectMonitors in circulation as well as the STW
duke@435 950 // scavenge costs. As usual, we lean toward time in space-time
duke@435 951 // tradeoffs.
duke@435 952 const int MAXPRIVATE = 1024 ;
duke@435 953 for (;;) {
duke@435 954 ObjectMonitor * m ;
duke@435 955
duke@435 956 // 1: try to allocate from the thread's local omFreeList.
duke@435 957 // Threads will attempt to allocate first from their local list, then
duke@435 958 // from the global list, and only after those attempts fail will the thread
duke@435 959 // attempt to instantiate new monitors. Thread-local free lists take
duke@435 960 // heat off the ListLock and improve allocation latency, as well as reducing
duke@435 961 // coherency traffic on the shared global list.
duke@435 962 m = Self->omFreeList ;
duke@435 963 if (m != NULL) {
duke@435 964 Self->omFreeList = m->FreeNext ;
duke@435 965 Self->omFreeCount -- ;
duke@435 966 // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
duke@435 967 guarantee (m->object() == NULL, "invariant") ;
acorn@1942 968 if (MonitorInUseLists) {
acorn@1942 969 m->FreeNext = Self->omInUseList;
acorn@1942 970 Self->omInUseList = m;
acorn@1942 971 Self->omInUseCount ++;
acorn@1995 972 // verifyInUse(Self);
acorn@1995 973 } else {
acorn@1995 974 m->FreeNext = NULL;
acorn@1942 975 }
duke@435 976 return m ;
duke@435 977 }
duke@435 978
duke@435 979 // 2: try to allocate from the global gFreeList
duke@435 980 // CONSIDER: use muxTry() instead of muxAcquire().
duke@435 981 // If the muxTry() fails then drop immediately into case 3.
duke@435 982 // If we're using thread-local free lists then try
duke@435 983 // to reprovision the caller's free list.
duke@435 984 if (gFreeList != NULL) {
duke@435 985 // Reprovision the thread's omFreeList.
duke@435 986 // Use bulk transfers to reduce the allocation rate and heat
duke@435 987 // on various locks.
duke@435 988 Thread::muxAcquire (&ListLock, "omAlloc") ;
duke@435 989 for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
acorn@1942 990 MonitorFreeCount --;
duke@435 991 ObjectMonitor * take = gFreeList ;
duke@435 992 gFreeList = take->FreeNext ;
duke@435 993 guarantee (take->object() == NULL, "invariant") ;
duke@435 994 guarantee (!take->is_busy(), "invariant") ;
duke@435 995 take->Recycle() ;
acorn@1995 996 omRelease (Self, take, false) ;
duke@435 997 }
duke@435 998 Thread::muxRelease (&ListLock) ;
duke@435 999 Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
duke@435 1000 if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
duke@435 1001 TEVENT (omFirst - reprovision) ;
acorn@1942 1002
acorn@1942 1003 const int mx = MonitorBound ;
acorn@1942 1004 if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
acorn@1942 1005 // We can't safely induce a STW safepoint from omAlloc() as our thread
acorn@1942 1006 // state may not be appropriate for such activities and callers may hold
acorn@1942 1007 // naked oops, so instead we defer the action.
acorn@1942 1008 InduceScavenge (Self, "omAlloc") ;
acorn@1942 1009 }
acorn@1942 1010 continue;
duke@435 1011 }
duke@435 1012
duke@435 1013 // 3: allocate a block of new ObjectMonitors
duke@435 1014 // Both the local and global free lists are empty -- resort to malloc().
duke@435 1015 // In the current implementation objectMonitors are TSM - immortal.
duke@435 1016 assert (_BLOCKSIZE > 1, "invariant") ;
duke@435 1017 ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
duke@435 1018
duke@435 1019 // NOTE: (almost) no way to recover if allocation failed.
duke@435 1020 // We might be able to induce a STW safepoint and scavenge enough
duke@435 1021 // objectMonitors to permit progress.
duke@435 1022 if (temp == NULL) {
duke@435 1023 vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
duke@435 1024 }
duke@435 1025
duke@435 1026 // Format the block.
duke@435 1027 // initialize the linked list, each monitor points to its next
duke@435 1028 // forming the single linked free list, the very first monitor
duke@435 1029 // will points to next block, which forms the block list.
duke@435 1030 // The trick of using the 1st element in the block as gBlockList
duke@435 1031 // linkage should be reconsidered. A better implementation would
duke@435 1032 // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
duke@435 1033
duke@435 1034 for (int i = 1; i < _BLOCKSIZE ; i++) {
duke@435 1035 temp[i].FreeNext = &temp[i+1];
duke@435 1036 }
duke@435 1037
duke@435 1038 // terminate the last monitor as the end of list
duke@435 1039 temp[_BLOCKSIZE - 1].FreeNext = NULL ;
duke@435 1040
duke@435 1041 // Element [0] is reserved for global list linkage
duke@435 1042 temp[0].set_object(CHAINMARKER);
duke@435 1043
duke@435 1044 // Consider carving out this thread's current request from the
duke@435 1045 // block in hand. This avoids some lock traffic and redundant
duke@435 1046 // list activity.
duke@435 1047
duke@435 1048 // Acquire the ListLock to manipulate BlockList and FreeList.
duke@435 1049 // An Oyama-Taura-Yonezawa scheme might be more efficient.
duke@435 1050 Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
acorn@1942 1051 MonitorPopulation += _BLOCKSIZE-1;
acorn@1942 1052 MonitorFreeCount += _BLOCKSIZE-1;
duke@435 1053
duke@435 1054 // Add the new block to the list of extant blocks (gBlockList).
duke@435 1055 // The very first objectMonitor in a block is reserved and dedicated.
duke@435 1056 // It serves as blocklist "next" linkage.
duke@435 1057 temp[0].FreeNext = gBlockList;
duke@435 1058 gBlockList = temp;
duke@435 1059
duke@435 1060 // Add the new string of objectMonitors to the global free list
duke@435 1061 temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
duke@435 1062 gFreeList = temp + 1;
duke@435 1063 Thread::muxRelease (&ListLock) ;
duke@435 1064 TEVENT (Allocate block of monitors) ;
duke@435 1065 }
duke@435 1066 }
duke@435 1067
duke@435 1068 // Place "m" on the caller's private per-thread omFreeList.
duke@435 1069 // In practice there's no need to clamp or limit the number of
duke@435 1070 // monitors on a thread's omFreeList as the only time we'll call
duke@435 1071 // omRelease is to return a monitor to the free list after a CAS
duke@435 1072 // attempt failed. This doesn't allow unbounded #s of monitors to
duke@435 1073 // accumulate on a thread's free list.
duke@435 1074 //
duke@435 1075
acorn@1995 1076 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
duke@435 1077 guarantee (m->object() == NULL, "invariant") ;
acorn@1995 1078
acorn@1995 1079 // Remove from omInUseList
acorn@1995 1080 if (MonitorInUseLists && fromPerThreadAlloc) {
acorn@1995 1081 ObjectMonitor* curmidinuse = NULL;
acorn@1995 1082 for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
acorn@1995 1083 if (m == mid) {
acorn@1995 1084 // extract from per-thread in-use-list
acorn@1995 1085 if (mid == Self->omInUseList) {
acorn@1995 1086 Self->omInUseList = mid->FreeNext;
acorn@1995 1087 } else if (curmidinuse != NULL) {
acorn@1995 1088 curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
acorn@1995 1089 }
acorn@1995 1090 Self->omInUseCount --;
acorn@1995 1091 // verifyInUse(Self);
acorn@1995 1092 break;
acorn@1995 1093 } else {
acorn@1995 1094 curmidinuse = mid;
acorn@1995 1095 mid = mid->FreeNext;
acorn@1995 1096 }
acorn@1995 1097 }
acorn@1995 1098 }
acorn@1995 1099
acorn@1995 1100 // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
acorn@1995 1101 m->FreeNext = Self->omFreeList ;
acorn@1995 1102 Self->omFreeList = m ;
acorn@1995 1103 Self->omFreeCount ++ ;
duke@435 1104 }
duke@435 1105
duke@435 1106 // Return the monitors of a moribund thread's local free list to
duke@435 1107 // the global free list. Typically a thread calls omFlush() when
duke@435 1108 // it's dying. We could also consider having the VM thread steal
duke@435 1109 // monitors from threads that have not run java code over a few
duke@435 1110 // consecutive STW safepoints. Relatedly, we might decay
duke@435 1111 // omFreeProvision at STW safepoints.
duke@435 1112 //
acorn@1995 1113 // Also return the monitors of a moribund thread"s omInUseList to
acorn@1995 1114 // a global gOmInUseList under the global list lock so these
acorn@1995 1115 // will continue to be scanned.
acorn@1995 1116 //
duke@435 1117 // We currently call omFlush() from the Thread:: dtor _after the thread
duke@435 1118 // has been excised from the thread list and is no longer a mutator.
duke@435 1119 // That means that omFlush() can run concurrently with a safepoint and
duke@435 1120 // the scavenge operator. Calling omFlush() from JavaThread::exit() might
duke@435 1121 // be a better choice as we could safely reason that that the JVM is
duke@435 1122 // not at a safepoint at the time of the call, and thus there could
duke@435 1123 // be not inopportune interleavings between omFlush() and the scavenge
duke@435 1124 // operator.
duke@435 1125
duke@435 1126 void ObjectSynchronizer::omFlush (Thread * Self) {
duke@435 1127 ObjectMonitor * List = Self->omFreeList ; // Null-terminated SLL
duke@435 1128 Self->omFreeList = NULL ;
duke@435 1129 ObjectMonitor * Tail = NULL ;
acorn@1942 1130 int Tally = 0;
acorn@1995 1131 if (List != NULL) {
acorn@1995 1132 ObjectMonitor * s ;
acorn@1995 1133 for (s = List ; s != NULL ; s = s->FreeNext) {
acorn@1995 1134 Tally ++ ;
acorn@1995 1135 Tail = s ;
acorn@1995 1136 guarantee (s->object() == NULL, "invariant") ;
acorn@1995 1137 guarantee (!s->is_busy(), "invariant") ;
acorn@1995 1138 s->set_owner (NULL) ; // redundant but good hygiene
acorn@1995 1139 TEVENT (omFlush - Move one) ;
acorn@1995 1140 }
acorn@1995 1141 guarantee (Tail != NULL && List != NULL, "invariant") ;
duke@435 1142 }
duke@435 1143
acorn@1995 1144 ObjectMonitor * InUseList = Self->omInUseList;
acorn@1995 1145 ObjectMonitor * InUseTail = NULL ;
acorn@1995 1146 int InUseTally = 0;
acorn@1995 1147 if (InUseList != NULL) {
acorn@1995 1148 Self->omInUseList = NULL;
acorn@1995 1149 ObjectMonitor *curom;
acorn@1995 1150 for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
acorn@1995 1151 InUseTail = curom;
acorn@1995 1152 InUseTally++;
acorn@1995 1153 }
acorn@1995 1154 // TODO debug
acorn@1995 1155 assert(Self->omInUseCount == InUseTally, "inuse count off");
acorn@1995 1156 Self->omInUseCount = 0;
acorn@1995 1157 guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
acorn@1995 1158 }
acorn@1995 1159
duke@435 1160 Thread::muxAcquire (&ListLock, "omFlush") ;
acorn@1995 1161 if (Tail != NULL) {
acorn@1995 1162 Tail->FreeNext = gFreeList ;
acorn@1995 1163 gFreeList = List ;
acorn@1995 1164 MonitorFreeCount += Tally;
acorn@1995 1165 }
acorn@1995 1166
acorn@1995 1167 if (InUseTail != NULL) {
acorn@1995 1168 InUseTail->FreeNext = gOmInUseList;
acorn@1995 1169 gOmInUseList = InUseList;
acorn@1995 1170 gOmInUseCount += InUseTally;
acorn@1995 1171 }
acorn@1995 1172
duke@435 1173 Thread::muxRelease (&ListLock) ;
duke@435 1174 TEVENT (omFlush) ;
duke@435 1175 }
duke@435 1176
duke@435 1177 // Fast path code shared by multiple functions
duke@435 1178 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
duke@435 1179 markOop mark = obj->mark();
duke@435 1180 if (mark->has_monitor()) {
duke@435 1181 assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
duke@435 1182 assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
duke@435 1183 return mark->monitor();
duke@435 1184 }
duke@435 1185 return ObjectSynchronizer::inflate(Thread::current(), obj);
duke@435 1186 }
duke@435 1187
acorn@2233 1188
duke@435 1189 // Note that we could encounter some performance loss through false-sharing as
duke@435 1190 // multiple locks occupy the same $ line. Padding might be appropriate.
duke@435 1191
duke@435 1192
duke@435 1193 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
duke@435 1194 // Inflate mutates the heap ...
duke@435 1195 // Relaxing assertion for bug 6320749.
duke@435 1196 assert (Universe::verify_in_progress() ||
duke@435 1197 !SafepointSynchronize::is_at_safepoint(), "invariant") ;
duke@435 1198
duke@435 1199 for (;;) {
duke@435 1200 const markOop mark = object->mark() ;
duke@435 1201 assert (!mark->has_bias_pattern(), "invariant") ;
duke@435 1202
duke@435 1203 // The mark can be in one of the following states:
duke@435 1204 // * Inflated - just return
duke@435 1205 // * Stack-locked - coerce it to inflated
duke@435 1206 // * INFLATING - busy wait for conversion to complete
duke@435 1207 // * Neutral - aggressively inflate the object.
duke@435 1208 // * BIASED - Illegal. We should never see this
duke@435 1209
duke@435 1210 // CASE: inflated
duke@435 1211 if (mark->has_monitor()) {
duke@435 1212 ObjectMonitor * inf = mark->monitor() ;
duke@435 1213 assert (inf->header()->is_neutral(), "invariant");
duke@435 1214 assert (inf->object() == object, "invariant") ;
duke@435 1215 assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
duke@435 1216 return inf ;
duke@435 1217 }
duke@435 1218
duke@435 1219 // CASE: inflation in progress - inflating over a stack-lock.
duke@435 1220 // Some other thread is converting from stack-locked to inflated.
duke@435 1221 // Only that thread can complete inflation -- other threads must wait.
duke@435 1222 // The INFLATING value is transient.
duke@435 1223 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
duke@435 1224 // We could always eliminate polling by parking the thread on some auxiliary list.
duke@435 1225 if (mark == markOopDesc::INFLATING()) {
duke@435 1226 TEVENT (Inflate: spin while INFLATING) ;
duke@435 1227 ReadStableMark(object) ;
duke@435 1228 continue ;
duke@435 1229 }
duke@435 1230
duke@435 1231 // CASE: stack-locked
duke@435 1232 // Could be stack-locked either by this thread or by some other thread.
duke@435 1233 //
duke@435 1234 // Note that we allocate the objectmonitor speculatively, _before_ attempting
duke@435 1235 // to install INFLATING into the mark word. We originally installed INFLATING,
duke@435 1236 // allocated the objectmonitor, and then finally STed the address of the
duke@435 1237 // objectmonitor into the mark. This was correct, but artificially lengthened
duke@435 1238 // the interval in which INFLATED appeared in the mark, thus increasing
duke@435 1239 // the odds of inflation contention.
duke@435 1240 //
duke@435 1241 // We now use per-thread private objectmonitor free lists.
duke@435 1242 // These list are reprovisioned from the global free list outside the
duke@435 1243 // critical INFLATING...ST interval. A thread can transfer
duke@435 1244 // multiple objectmonitors en-mass from the global free list to its local free list.
duke@435 1245 // This reduces coherency traffic and lock contention on the global free list.
duke@435 1246 // Using such local free lists, it doesn't matter if the omAlloc() call appears
duke@435 1247 // before or after the CAS(INFLATING) operation.
duke@435 1248 // See the comments in omAlloc().
duke@435 1249
duke@435 1250 if (mark->has_locker()) {
duke@435 1251 ObjectMonitor * m = omAlloc (Self) ;
duke@435 1252 // Optimistically prepare the objectmonitor - anticipate successful CAS
duke@435 1253 // We do this before the CAS in order to minimize the length of time
duke@435 1254 // in which INFLATING appears in the mark.
duke@435 1255 m->Recycle();
duke@435 1256 m->_Responsible = NULL ;
duke@435 1257 m->OwnerIsThread = 0 ;
duke@435 1258 m->_recursions = 0 ;
acorn@2233 1259 m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // Consider: maintain by type/class
duke@435 1260
duke@435 1261 markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
duke@435 1262 if (cmp != mark) {
acorn@1995 1263 omRelease (Self, m, true) ;
duke@435 1264 continue ; // Interference -- just retry
duke@435 1265 }
duke@435 1266
duke@435 1267 // We've successfully installed INFLATING (0) into the mark-word.
duke@435 1268 // This is the only case where 0 will appear in a mark-work.
duke@435 1269 // Only the singular thread that successfully swings the mark-word
duke@435 1270 // to 0 can perform (or more precisely, complete) inflation.
duke@435 1271 //
duke@435 1272 // Why do we CAS a 0 into the mark-word instead of just CASing the
duke@435 1273 // mark-word from the stack-locked value directly to the new inflated state?
duke@435 1274 // Consider what happens when a thread unlocks a stack-locked object.
duke@435 1275 // It attempts to use CAS to swing the displaced header value from the
duke@435 1276 // on-stack basiclock back into the object header. Recall also that the
duke@435 1277 // header value (hashcode, etc) can reside in (a) the object header, or
duke@435 1278 // (b) a displaced header associated with the stack-lock, or (c) a displaced
duke@435 1279 // header in an objectMonitor. The inflate() routine must copy the header
duke@435 1280 // value from the basiclock on the owner's stack to the objectMonitor, all
duke@435 1281 // the while preserving the hashCode stability invariants. If the owner
duke@435 1282 // decides to release the lock while the value is 0, the unlock will fail
duke@435 1283 // and control will eventually pass from slow_exit() to inflate. The owner
duke@435 1284 // will then spin, waiting for the 0 value to disappear. Put another way,
duke@435 1285 // the 0 causes the owner to stall if the owner happens to try to
duke@435 1286 // drop the lock (restoring the header from the basiclock to the object)
duke@435 1287 // while inflation is in-progress. This protocol avoids races that might
duke@435 1288 // would otherwise permit hashCode values to change or "flicker" for an object.
duke@435 1289 // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
duke@435 1290 // 0 serves as a "BUSY" inflate-in-progress indicator.
duke@435 1291
duke@435 1292
duke@435 1293 // fetch the displaced mark from the owner's stack.
duke@435 1294 // The owner can't die or unwind past the lock while our INFLATING
duke@435 1295 // object is in the mark. Furthermore the owner can't complete
duke@435 1296 // an unlock on the object, either.
duke@435 1297 markOop dmw = mark->displaced_mark_helper() ;
duke@435 1298 assert (dmw->is_neutral(), "invariant") ;
duke@435 1299
duke@435 1300 // Setup monitor fields to proper values -- prepare the monitor
duke@435 1301 m->set_header(dmw) ;
duke@435 1302
duke@435 1303 // Optimization: if the mark->locker stack address is associated
duke@435 1304 // with this thread we could simply set m->_owner = Self and
xlu@1137 1305 // m->OwnerIsThread = 1. Note that a thread can inflate an object
duke@435 1306 // that it has stack-locked -- as might happen in wait() -- directly
duke@435 1307 // with CAS. That is, we can avoid the xchg-NULL .... ST idiom.
xlu@1137 1308 m->set_owner(mark->locker());
duke@435 1309 m->set_object(object);
duke@435 1310 // TODO-FIXME: assert BasicLock->dhw != 0.
duke@435 1311
duke@435 1312 // Must preserve store ordering. The monitor state must
duke@435 1313 // be stable at the time of publishing the monitor address.
duke@435 1314 guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
duke@435 1315 object->release_set_mark(markOopDesc::encode(m));
duke@435 1316
duke@435 1317 // Hopefully the performance counters are allocated on distinct cache lines
duke@435 1318 // to avoid false sharing on MP systems ...
acorn@2233 1319 if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
duke@435 1320 TEVENT(Inflate: overwrite stacklock) ;
duke@435 1321 if (TraceMonitorInflation) {
duke@435 1322 if (object->is_instance()) {
duke@435 1323 ResourceMark rm;
duke@435 1324 tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
duke@435 1325 (intptr_t) object, (intptr_t) object->mark(),
duke@435 1326 Klass::cast(object->klass())->external_name());
duke@435 1327 }
duke@435 1328 }
duke@435 1329 return m ;
duke@435 1330 }
duke@435 1331
duke@435 1332 // CASE: neutral
duke@435 1333 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
duke@435 1334 // If we know we're inflating for entry it's better to inflate by swinging a
duke@435 1335 // pre-locked objectMonitor pointer into the object header. A successful
duke@435 1336 // CAS inflates the object *and* confers ownership to the inflating thread.
duke@435 1337 // In the current implementation we use a 2-step mechanism where we CAS()
duke@435 1338 // to inflate and then CAS() again to try to swing _owner from NULL to Self.
duke@435 1339 // An inflateTry() method that we could call from fast_enter() and slow_enter()
duke@435 1340 // would be useful.
duke@435 1341
duke@435 1342 assert (mark->is_neutral(), "invariant");
duke@435 1343 ObjectMonitor * m = omAlloc (Self) ;
duke@435 1344 // prepare m for installation - set monitor to initial state
duke@435 1345 m->Recycle();
duke@435 1346 m->set_header(mark);
duke@435 1347 m->set_owner(NULL);
duke@435 1348 m->set_object(object);
duke@435 1349 m->OwnerIsThread = 1 ;
duke@435 1350 m->_recursions = 0 ;
duke@435 1351 m->_Responsible = NULL ;
acorn@2233 1352 m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // consider: keep metastats by type/class
duke@435 1353
duke@435 1354 if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
duke@435 1355 m->set_object (NULL) ;
duke@435 1356 m->set_owner (NULL) ;
duke@435 1357 m->OwnerIsThread = 0 ;
duke@435 1358 m->Recycle() ;
acorn@1995 1359 omRelease (Self, m, true) ;
duke@435 1360 m = NULL ;
duke@435 1361 continue ;
duke@435 1362 // interference - the markword changed - just retry.
duke@435 1363 // The state-transitions are one-way, so there's no chance of
duke@435 1364 // live-lock -- "Inflated" is an absorbing state.
duke@435 1365 }
duke@435 1366
duke@435 1367 // Hopefully the performance counters are allocated on distinct
duke@435 1368 // cache lines to avoid false sharing on MP systems ...
acorn@2233 1369 if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
duke@435 1370 TEVENT(Inflate: overwrite neutral) ;
duke@435 1371 if (TraceMonitorInflation) {
duke@435 1372 if (object->is_instance()) {
duke@435 1373 ResourceMark rm;
duke@435 1374 tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
duke@435 1375 (intptr_t) object, (intptr_t) object->mark(),
duke@435 1376 Klass::cast(object->klass())->external_name());
duke@435 1377 }
duke@435 1378 }
duke@435 1379 return m ;
duke@435 1380 }
duke@435 1381 }
duke@435 1382
acorn@2233 1383 // Note that we could encounter some performance loss through false-sharing as
acorn@2233 1384 // multiple locks occupy the same $ line. Padding might be appropriate.
duke@435 1385
duke@435 1386
duke@435 1387 // Deflate_idle_monitors() is called at all safepoints, immediately
duke@435 1388 // after all mutators are stopped, but before any objects have moved.
duke@435 1389 // It traverses the list of known monitors, deflating where possible.
duke@435 1390 // The scavenged monitor are returned to the monitor free list.
duke@435 1391 //
duke@435 1392 // Beware that we scavenge at *every* stop-the-world point.
duke@435 1393 // Having a large number of monitors in-circulation negatively
duke@435 1394 // impacts the performance of some applications (e.g., PointBase).
duke@435 1395 // Broadly, we want to minimize the # of monitors in circulation.
acorn@1942 1396 //
acorn@1942 1397 // We have added a flag, MonitorInUseLists, which creates a list
acorn@1942 1398 // of active monitors for each thread. deflate_idle_monitors()
acorn@1942 1399 // only scans the per-thread inuse lists. omAlloc() puts all
acorn@1942 1400 // assigned monitors on the per-thread list. deflate_idle_monitors()
acorn@1942 1401 // returns the non-busy monitors to the global free list.
acorn@1995 1402 // When a thread dies, omFlush() adds the list of active monitors for
acorn@1995 1403 // that thread to a global gOmInUseList acquiring the
acorn@1995 1404 // global list lock. deflate_idle_monitors() acquires the global
acorn@1995 1405 // list lock to scan for non-busy monitors to the global free list.
acorn@1942 1406 // An alternative could have used a single global inuse list. The
acorn@1942 1407 // downside would have been the additional cost of acquiring the global list lock
acorn@1942 1408 // for every omAlloc().
duke@435 1409 //
duke@435 1410 // Perversely, the heap size -- and thus the STW safepoint rate --
duke@435 1411 // typically drives the scavenge rate. Large heaps can mean infrequent GC,
duke@435 1412 // which in turn can mean large(r) numbers of objectmonitors in circulation.
duke@435 1413 // This is an unfortunate aspect of this design.
duke@435 1414 //
duke@435 1415
acorn@2233 1416 enum ManifestConstants {
acorn@2233 1417 ClearResponsibleAtSTW = 0,
acorn@2233 1418 MaximumRecheckInterval = 1000
acorn@2233 1419 } ;
acorn@1942 1420
acorn@1942 1421 // Deflate a single monitor if not in use
acorn@1942 1422 // Return true if deflated, false if in use
acorn@1942 1423 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
acorn@1942 1424 ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
acorn@1942 1425 bool deflated;
acorn@1942 1426 // Normal case ... The monitor is associated with obj.
acorn@1942 1427 guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
acorn@1942 1428 guarantee (mid == obj->mark()->monitor(), "invariant");
acorn@1942 1429 guarantee (mid->header()->is_neutral(), "invariant");
acorn@1942 1430
acorn@1942 1431 if (mid->is_busy()) {
acorn@1942 1432 if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
acorn@1942 1433 deflated = false;
acorn@1942 1434 } else {
acorn@1942 1435 // Deflate the monitor if it is no longer being used
acorn@1942 1436 // It's idle - scavenge and return to the global free list
acorn@1942 1437 // plain old deflation ...
acorn@1942 1438 TEVENT (deflate_idle_monitors - scavenge1) ;
acorn@1942 1439 if (TraceMonitorInflation) {
acorn@1942 1440 if (obj->is_instance()) {
acorn@1942 1441 ResourceMark rm;
acorn@1942 1442 tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
acorn@1942 1443 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
acorn@1942 1444 }
acorn@1942 1445 }
acorn@1942 1446
acorn@1942 1447 // Restore the header back to obj
acorn@1942 1448 obj->release_set_mark(mid->header());
acorn@1942 1449 mid->clear();
acorn@1942 1450
acorn@1942 1451 assert (mid->object() == NULL, "invariant") ;
acorn@1942 1452
acorn@1942 1453 // Move the object to the working free list defined by FreeHead,FreeTail.
acorn@1942 1454 if (*FreeHeadp == NULL) *FreeHeadp = mid;
acorn@1942 1455 if (*FreeTailp != NULL) {
acorn@1942 1456 ObjectMonitor * prevtail = *FreeTailp;
acorn@1995 1457 assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
acorn@1942 1458 prevtail->FreeNext = mid;
acorn@1942 1459 }
acorn@1942 1460 *FreeTailp = mid;
acorn@1942 1461 deflated = true;
acorn@1942 1462 }
acorn@1942 1463 return deflated;
acorn@1942 1464 }
acorn@1942 1465
acorn@1995 1466 // Caller acquires ListLock
acorn@1995 1467 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
acorn@1995 1468 ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
acorn@1995 1469 ObjectMonitor* mid;
acorn@1995 1470 ObjectMonitor* next;
acorn@1995 1471 ObjectMonitor* curmidinuse = NULL;
acorn@1995 1472 int deflatedcount = 0;
acorn@1995 1473
acorn@1995 1474 for (mid = *listheadp; mid != NULL; ) {
acorn@1995 1475 oop obj = (oop) mid->object();
acorn@1995 1476 bool deflated = false;
acorn@1995 1477 if (obj != NULL) {
acorn@1995 1478 deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
acorn@1995 1479 }
acorn@1995 1480 if (deflated) {
acorn@1995 1481 // extract from per-thread in-use-list
acorn@1995 1482 if (mid == *listheadp) {
acorn@1995 1483 *listheadp = mid->FreeNext;
acorn@1995 1484 } else if (curmidinuse != NULL) {
acorn@1995 1485 curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
acorn@1995 1486 }
acorn@1995 1487 next = mid->FreeNext;
acorn@1995 1488 mid->FreeNext = NULL; // This mid is current tail in the FreeHead list
acorn@1995 1489 mid = next;
acorn@1995 1490 deflatedcount++;
acorn@1995 1491 } else {
acorn@1995 1492 curmidinuse = mid;
acorn@1995 1493 mid = mid->FreeNext;
acorn@1995 1494 }
acorn@1995 1495 }
acorn@1995 1496 return deflatedcount;
acorn@1995 1497 }
acorn@1995 1498
duke@435 1499 void ObjectSynchronizer::deflate_idle_monitors() {
duke@435 1500 assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
duke@435 1501 int nInuse = 0 ; // currently associated with objects
duke@435 1502 int nInCirculation = 0 ; // extant
duke@435 1503 int nScavenged = 0 ; // reclaimed
acorn@1942 1504 bool deflated = false;
duke@435 1505
duke@435 1506 ObjectMonitor * FreeHead = NULL ; // Local SLL of scavenged monitors
duke@435 1507 ObjectMonitor * FreeTail = NULL ;
duke@435 1508
acorn@1942 1509 TEVENT (deflate_idle_monitors) ;
acorn@1942 1510 // Prevent omFlush from changing mids in Thread dtor's during deflation
acorn@1942 1511 // And in case the vm thread is acquiring a lock during a safepoint
acorn@1942 1512 // See e.g. 6320749
acorn@1942 1513 Thread::muxAcquire (&ListLock, "scavenge - return") ;
acorn@1942 1514
acorn@1942 1515 if (MonitorInUseLists) {
acorn@1995 1516 int inUse = 0;
acorn@1942 1517 for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
acorn@1995 1518 nInCirculation+= cur->omInUseCount;
acorn@1995 1519 int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
acorn@1995 1520 cur->omInUseCount-= deflatedcount;
acorn@1995 1521 // verifyInUse(cur);
acorn@1995 1522 nScavenged += deflatedcount;
acorn@1995 1523 nInuse += cur->omInUseCount;
acorn@1942 1524 }
acorn@1995 1525
acorn@1995 1526 // For moribund threads, scan gOmInUseList
acorn@1995 1527 if (gOmInUseList) {
acorn@1995 1528 nInCirculation += gOmInUseCount;
acorn@1995 1529 int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
acorn@1995 1530 gOmInUseCount-= deflatedcount;
acorn@1995 1531 nScavenged += deflatedcount;
acorn@1995 1532 nInuse += gOmInUseCount;
acorn@1995 1533 }
acorn@1995 1534
acorn@1942 1535 } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
duke@435 1536 // Iterate over all extant monitors - Scavenge all idle monitors.
duke@435 1537 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1538 nInCirculation += _BLOCKSIZE ;
duke@435 1539 for (int i = 1 ; i < _BLOCKSIZE; i++) {
duke@435 1540 ObjectMonitor* mid = &block[i];
duke@435 1541 oop obj = (oop) mid->object();
duke@435 1542
duke@435 1543 if (obj == NULL) {
duke@435 1544 // The monitor is not associated with an object.
duke@435 1545 // The monitor should either be a thread-specific private
duke@435 1546 // free list or the global free list.
duke@435 1547 // obj == NULL IMPLIES mid->is_busy() == 0
duke@435 1548 guarantee (!mid->is_busy(), "invariant") ;
duke@435 1549 continue ;
duke@435 1550 }
acorn@1942 1551 deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
acorn@1942 1552
acorn@1942 1553 if (deflated) {
acorn@1942 1554 mid->FreeNext = NULL ;
acorn@1942 1555 nScavenged ++ ;
duke@435 1556 } else {
acorn@1942 1557 nInuse ++;
duke@435 1558 }
duke@435 1559 }
duke@435 1560 }
duke@435 1561
acorn@1942 1562 MonitorFreeCount += nScavenged;
acorn@1942 1563
acorn@1942 1564 // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
acorn@1942 1565
acorn@2233 1566 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 1567 ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
acorn@1942 1568 nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
acorn@1942 1569 MonitorPopulation, MonitorFreeCount) ;
acorn@1942 1570 ::fflush(stdout) ;
acorn@1942 1571 }
acorn@1942 1572
acorn@1942 1573 ForceMonitorScavenge = 0; // Reset
acorn@1942 1574
duke@435 1575 // Move the scavenged monitors back to the global free list.
duke@435 1576 if (FreeHead != NULL) {
duke@435 1577 guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
duke@435 1578 assert (FreeTail->FreeNext == NULL, "invariant") ;
duke@435 1579 // constant-time list splice - prepend scavenged segment to gFreeList
duke@435 1580 FreeTail->FreeNext = gFreeList ;
duke@435 1581 gFreeList = FreeHead ;
duke@435 1582 }
acorn@1942 1583 Thread::muxRelease (&ListLock) ;
duke@435 1584
acorn@2233 1585 if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
acorn@2233 1586 if (ObjectMonitor::_sync_MonExtant != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
duke@435 1587
duke@435 1588 // TODO: Add objectMonitor leak detection.
duke@435 1589 // Audit/inventory the objectMonitors -- make sure they're all accounted for.
duke@435 1590 GVars.stwRandom = os::random() ;
duke@435 1591 GVars.stwCycle ++ ;
duke@435 1592 }
duke@435 1593
acorn@2233 1594 // Monitor cleanup on JavaThread::exit
duke@435 1595
acorn@2233 1596 // Iterate through monitor cache and attempt to release thread's monitors
acorn@2233 1597 // Gives up on a particular monitor if an exception occurs, but continues
acorn@2233 1598 // the overall iteration, swallowing the exception.
acorn@2233 1599 class ReleaseJavaMonitorsClosure: public MonitorClosure {
acorn@2233 1600 private:
acorn@2233 1601 TRAPS;
duke@435 1602
acorn@2233 1603 public:
acorn@2233 1604 ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
acorn@2233 1605 void do_monitor(ObjectMonitor* mid) {
acorn@2233 1606 if (mid->owner() == THREAD) {
acorn@2233 1607 (void)mid->complete_exit(CHECK);
duke@435 1608 }
duke@435 1609 }
acorn@2233 1610 };
acorn@2233 1611
acorn@2233 1612 // Release all inflated monitors owned by THREAD. Lightweight monitors are
acorn@2233 1613 // ignored. This is meant to be called during JNI thread detach which assumes
acorn@2233 1614 // all remaining monitors are heavyweight. All exceptions are swallowed.
acorn@2233 1615 // Scanning the extant monitor list can be time consuming.
acorn@2233 1616 // A simple optimization is to add a per-thread flag that indicates a thread
acorn@2233 1617 // called jni_monitorenter() during its lifetime.
acorn@2233 1618 //
acorn@2233 1619 // Instead of No_Savepoint_Verifier it might be cheaper to
acorn@2233 1620 // use an idiom of the form:
acorn@2233 1621 // auto int tmp = SafepointSynchronize::_safepoint_counter ;
acorn@2233 1622 // <code that must not run at safepoint>
acorn@2233 1623 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
acorn@2233 1624 // Since the tests are extremely cheap we could leave them enabled
acorn@2233 1625 // for normal product builds.
acorn@2233 1626
acorn@2233 1627 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
acorn@2233 1628 assert(THREAD == JavaThread::current(), "must be current Java thread");
acorn@2233 1629 No_Safepoint_Verifier nsv ;
acorn@2233 1630 ReleaseJavaMonitorsClosure rjmc(THREAD);
acorn@2233 1631 Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
acorn@2233 1632 ObjectSynchronizer::monitors_iterate(&rjmc);
acorn@2233 1633 Thread::muxRelease(&ListLock);
acorn@2233 1634 THREAD->clear_pending_exception();
duke@435 1635 }
duke@435 1636
duke@435 1637 //------------------------------------------------------------------------------
duke@435 1638 // Non-product code
duke@435 1639
duke@435 1640 #ifndef PRODUCT
duke@435 1641
duke@435 1642 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
duke@435 1643 bool is_method, bool is_locking) {
duke@435 1644 // Don't know what to do here
duke@435 1645 }
duke@435 1646
duke@435 1647 // Verify all monitors in the monitor cache, the verification is weak.
duke@435 1648 void ObjectSynchronizer::verify() {
duke@435 1649 ObjectMonitor* block = gBlockList;
duke@435 1650 ObjectMonitor* mid;
duke@435 1651 while (block) {
duke@435 1652 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1653 for (int i = 1; i < _BLOCKSIZE; i++) {
duke@435 1654 mid = block + i;
duke@435 1655 oop object = (oop) mid->object();
duke@435 1656 if (object != NULL) {
duke@435 1657 mid->verify();
duke@435 1658 }
duke@435 1659 }
duke@435 1660 block = (ObjectMonitor*) block->FreeNext;
duke@435 1661 }
duke@435 1662 }
duke@435 1663
duke@435 1664 // Check if monitor belongs to the monitor cache
duke@435 1665 // The list is grow-only so it's *relatively* safe to traverse
duke@435 1666 // the list of extant blocks without taking a lock.
duke@435 1667
duke@435 1668 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
duke@435 1669 ObjectMonitor* block = gBlockList;
duke@435 1670
duke@435 1671 while (block) {
duke@435 1672 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1673 if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
duke@435 1674 address mon = (address) monitor;
duke@435 1675 address blk = (address) block;
duke@435 1676 size_t diff = mon - blk;
duke@435 1677 assert((diff % sizeof(ObjectMonitor)) == 0, "check");
duke@435 1678 return 1;
duke@435 1679 }
duke@435 1680 block = (ObjectMonitor*) block->FreeNext;
duke@435 1681 }
duke@435 1682 return 0;
duke@435 1683 }
duke@435 1684
duke@435 1685 #endif

mercurial