src/share/vm/memory/cardTableModRefBS.cpp

Fri, 25 Jan 2013 15:06:18 -0500

author
acorn
date
Fri, 25 Jan 2013 15:06:18 -0500
changeset 4497
16fb9f942703
parent 4153
b9a9ed0f8eeb
child 4542
db9981fd3124
permissions
-rw-r--r--

6479360: PrintClassHistogram improvements
Summary: jcmd <pid> GC.class_stats (UnlockDiagnosticVMOptions)
Reviewed-by: coleenp, hseigel, sla, acorn
Contributed-by: ioi.lam@oracle.com

duke@435 1 /*
mikael@4153 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "memory/space.inline.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
zgu@3900 36 #include "services/memTracker.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_LIR.hpp"
stefank@2314 39 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 40 #endif
stefank@2314 41
duke@435 42 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 43 // enumerate ref fields that have been modified (since the last
duke@435 44 // enumeration.)
duke@435 45
duke@435 46 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 47 {
duke@435 48 // Add one for a guard card, used to detect errors.
duke@435 49 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 50 return words / card_size_in_words + 1;
duke@435 51 }
duke@435 52
duke@435 53 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 54 {
duke@435 55 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 56 "unitialized, check declaration order");
duke@435 57 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 58 const size_t granularity = os::vm_allocation_granularity();
duke@435 59 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 60 }
duke@435 61
duke@435 62 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 63 int max_covered_regions):
duke@435 64 ModRefBarrierSet(max_covered_regions),
duke@435 65 _whole_heap(whole_heap),
duke@435 66 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 67 _last_valid_index(_guard_index - 1),
jcoomes@456 68 _page_size(os::vm_page_size()),
duke@435 69 _byte_map_size(compute_byte_map_size())
duke@435 70 {
duke@435 71 _kind = BarrierSet::CardTableModRef;
duke@435 72
duke@435 73 HeapWord* low_bound = _whole_heap.start();
duke@435 74 HeapWord* high_bound = _whole_heap.end();
duke@435 75 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 76 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 77
duke@435 78 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 79
duke@435 80 _covered = new MemRegion[max_covered_regions];
duke@435 81 _committed = new MemRegion[max_covered_regions];
duke@435 82 if (_covered == NULL || _committed == NULL)
duke@435 83 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 84 int i;
duke@435 85 for (i = 0; i < max_covered_regions; i++) {
duke@435 86 _covered[i].set_word_size(0);
duke@435 87 _committed[i].set_word_size(0);
duke@435 88 }
duke@435 89 _cur_covered_regions = 0;
duke@435 90
duke@435 91 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 92 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 93 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
zgu@3900 94
zgu@3900 95 MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
zgu@3900 96
duke@435 97 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 98 _page_size, heap_rs.base(), heap_rs.size());
duke@435 99 if (!heap_rs.is_reserved()) {
duke@435 100 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 101 "card marking array");
duke@435 102 }
duke@435 103
duke@435 104 // The assember store_check code will do an unsigned shift of the oop,
duke@435 105 // then add it to byte_map_base, i.e.
duke@435 106 //
duke@435 107 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 108 _byte_map = (jbyte*) heap_rs.base();
duke@435 109 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 110 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 111 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 112
duke@435 113 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 114 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 115 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
duke@435 116 if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
duke@435 117 // Do better than this for Merlin
duke@435 118 vm_exit_out_of_memory(_page_size, "card table last card");
duke@435 119 }
zgu@3900 120
duke@435 121 *guard_card = last_card;
duke@435 122
duke@435 123 _lowest_non_clean =
zgu@3900 124 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions, mtGC);
duke@435 125 _lowest_non_clean_chunk_size =
zgu@3900 126 NEW_C_HEAP_ARRAY(size_t, max_covered_regions, mtGC);
duke@435 127 _lowest_non_clean_base_chunk_index =
zgu@3900 128 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions, mtGC);
duke@435 129 _last_LNC_resizing_collection =
zgu@3900 130 NEW_C_HEAP_ARRAY(int, max_covered_regions, mtGC);
duke@435 131 if (_lowest_non_clean == NULL
duke@435 132 || _lowest_non_clean_chunk_size == NULL
duke@435 133 || _lowest_non_clean_base_chunk_index == NULL
duke@435 134 || _last_LNC_resizing_collection == NULL)
duke@435 135 vm_exit_during_initialization("couldn't allocate an LNC array.");
duke@435 136 for (i = 0; i < max_covered_regions; i++) {
duke@435 137 _lowest_non_clean[i] = NULL;
duke@435 138 _lowest_non_clean_chunk_size[i] = 0;
duke@435 139 _last_LNC_resizing_collection[i] = -1;
duke@435 140 }
duke@435 141
duke@435 142 if (TraceCardTableModRefBS) {
duke@435 143 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 144 gclog_or_tty->print_cr(" "
duke@435 145 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 146 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
duke@435 147 &_byte_map[0],
duke@435 148 &_byte_map[_last_valid_index]);
duke@435 149 gclog_or_tty->print_cr(" "
duke@435 150 " byte_map_base: " INTPTR_FORMAT,
duke@435 151 byte_map_base);
duke@435 152 }
duke@435 153 }
duke@435 154
duke@435 155 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 156 int i;
duke@435 157 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 158 if (_covered[i].start() == base) return i;
duke@435 159 if (_covered[i].start() > base) break;
duke@435 160 }
duke@435 161 // If we didn't find it, create a new one.
duke@435 162 assert(_cur_covered_regions < _max_covered_regions,
duke@435 163 "too many covered regions");
duke@435 164 // Move the ones above up, to maintain sorted order.
duke@435 165 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 166 _covered[j] = _covered[j-1];
duke@435 167 _committed[j] = _committed[j-1];
duke@435 168 }
duke@435 169 int res = i;
duke@435 170 _cur_covered_regions++;
duke@435 171 _covered[res].set_start(base);
duke@435 172 _covered[res].set_word_size(0);
duke@435 173 jbyte* ct_start = byte_for(base);
duke@435 174 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 175 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 176 _committed[res].set_word_size(0);
duke@435 177 return res;
duke@435 178 }
duke@435 179
duke@435 180 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 181 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 182 if (_covered[i].contains(addr)) {
duke@435 183 return i;
duke@435 184 }
duke@435 185 }
duke@435 186 assert(0, "address outside of heap?");
duke@435 187 return -1;
duke@435 188 }
duke@435 189
duke@435 190 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 191 HeapWord* max_end = NULL;
duke@435 192 for (int j = 0; j < ind; j++) {
duke@435 193 HeapWord* this_end = _committed[j].end();
duke@435 194 if (this_end > max_end) max_end = this_end;
duke@435 195 }
duke@435 196 return max_end;
duke@435 197 }
duke@435 198
duke@435 199 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 200 MemRegion mr) const {
duke@435 201 MemRegion result = mr;
duke@435 202 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 203 if (r != self) {
duke@435 204 result = result.minus(_committed[r]);
duke@435 205 }
duke@435 206 }
duke@435 207 // Never include the guard page.
duke@435 208 result = result.minus(_guard_region);
duke@435 209 return result;
duke@435 210 }
duke@435 211
duke@435 212 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 213 // We don't change the start of a region, only the end.
duke@435 214 assert(_whole_heap.contains(new_region),
duke@435 215 "attempt to cover area not in reserved area");
duke@435 216 debug_only(verify_guard();)
jmasa@643 217 // collided is true if the expansion would push into another committed region
jmasa@643 218 debug_only(bool collided = false;)
jmasa@441 219 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 220 MemRegion const old_region = _covered[ind];
duke@435 221 assert(old_region.start() == new_region.start(), "just checking");
duke@435 222 if (new_region.word_size() != old_region.word_size()) {
duke@435 223 // Commit new or uncommit old pages, if necessary.
duke@435 224 MemRegion cur_committed = _committed[ind];
duke@435 225 // Extend the end of this _commited region
duke@435 226 // to cover the end of any lower _committed regions.
duke@435 227 // This forms overlapping regions, but never interior regions.
jmasa@441 228 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 229 if (max_prev_end > cur_committed.end()) {
duke@435 230 cur_committed.set_end(max_prev_end);
duke@435 231 }
duke@435 232 // Align the end up to a page size (starts are already aligned).
jmasa@441 233 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 234 HeapWord* new_end_aligned =
jmasa@441 235 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 236 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 237 "align up, but less");
jmasa@1016 238 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 239 // the new_end_aligned does not intrude onto the committed
jmasa@1016 240 // space of another region.
jmasa@643 241 int ri = 0;
jmasa@643 242 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 243 if (ri != ind) {
jmasa@643 244 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 245 // The prior check included in the assert
jmasa@1016 246 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 247 // is redundant with the "contains" test.
jmasa@1016 248 // Any region containing the new end
jmasa@1016 249 // should start at or beyond the region found (ind)
jmasa@1016 250 // for the new end (committed regions are not expected to
jmasa@1016 251 // be proper subsets of other committed regions).
jmasa@1016 252 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 253 "New end of committed region is inconsistent");
jmasa@643 254 new_end_aligned = _committed[ri].start();
jmasa@1016 255 // new_end_aligned can be equal to the start of its
jmasa@1016 256 // committed region (i.e., of "ind") if a second
jmasa@1016 257 // region following "ind" also start at the same location
jmasa@1016 258 // as "ind".
jmasa@1016 259 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 260 "New end of committed region is before start");
jmasa@643 261 debug_only(collided = true;)
jmasa@643 262 // Should only collide with 1 region
jmasa@643 263 break;
jmasa@643 264 }
jmasa@643 265 }
jmasa@643 266 }
jmasa@643 267 #ifdef ASSERT
jmasa@643 268 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 269 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 270 "New end of committed region is in a second committed region");
jmasa@643 271 }
jmasa@643 272 #endif
duke@435 273 // The guard page is always committed and should not be committed over.
jmasa@1322 274 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 275 // that the would-be end of the new committed region would have
jmasa@1322 276 // penetrated the guard page.
jmasa@1322 277 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 278
jmasa@1322 279 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 280 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 281 new_end_for_commit = _guard_region.start();
jmasa@1322 282 DEBUG_ONLY(guarded = true;)
jmasa@1322 283 }
jmasa@643 284
duke@435 285 if (new_end_for_commit > cur_committed.end()) {
duke@435 286 // Must commit new pages.
jmasa@441 287 MemRegion const new_committed =
duke@435 288 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 289
duke@435 290 assert(!new_committed.is_empty(), "Region should not be empty here");
duke@435 291 if (!os::commit_memory((char*)new_committed.start(),
duke@435 292 new_committed.byte_size(), _page_size)) {
duke@435 293 // Do better than this for Merlin
duke@435 294 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 295 "card table expansion");
duke@435 296 }
duke@435 297 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 298 // the cur_committed region may include the guard region.
duke@435 299 } else if (new_end_aligned < cur_committed.end()) {
duke@435 300 // Must uncommit pages.
jmasa@441 301 MemRegion const uncommit_region =
duke@435 302 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 303 cur_committed.end()));
duke@435 304 if (!uncommit_region.is_empty()) {
jmasa@1967 305 // It is not safe to uncommit cards if the boundary between
jmasa@1967 306 // the generations is moving. A shrink can uncommit cards
jmasa@1967 307 // owned by generation A but being used by generation B.
jmasa@1967 308 if (!UseAdaptiveGCBoundary) {
jmasa@1967 309 if (!os::uncommit_memory((char*)uncommit_region.start(),
jmasa@1967 310 uncommit_region.byte_size())) {
jmasa@1967 311 assert(false, "Card table contraction failed");
jmasa@1967 312 // The call failed so don't change the end of the
jmasa@1967 313 // committed region. This is better than taking the
jmasa@1967 314 // VM down.
jmasa@1967 315 new_end_aligned = _committed[ind].end();
jmasa@1967 316 }
jmasa@1967 317 } else {
jmasa@643 318 new_end_aligned = _committed[ind].end();
duke@435 319 }
duke@435 320 }
duke@435 321 }
duke@435 322 // In any case, we can reset the end of the current committed entry.
duke@435 323 _committed[ind].set_end(new_end_aligned);
duke@435 324
jmasa@1967 325 #ifdef ASSERT
jmasa@1967 326 // Check that the last card in the new region is committed according
jmasa@1967 327 // to the tables.
jmasa@1967 328 bool covered = false;
jmasa@1967 329 for (int cr = 0; cr < _cur_covered_regions; cr++) {
jmasa@1967 330 if (_committed[cr].contains(new_end - 1)) {
jmasa@1967 331 covered = true;
jmasa@1967 332 break;
jmasa@1967 333 }
jmasa@1967 334 }
jmasa@1967 335 assert(covered, "Card for end of new region not committed");
jmasa@1967 336 #endif
jmasa@1967 337
duke@435 338 // The default of 0 is not necessarily clean cards.
duke@435 339 jbyte* entry;
duke@435 340 if (old_region.last() < _whole_heap.start()) {
duke@435 341 entry = byte_for(_whole_heap.start());
duke@435 342 } else {
duke@435 343 entry = byte_after(old_region.last());
duke@435 344 }
swamyv@924 345 assert(index_for(new_region.last()) < _guard_index,
duke@435 346 "The guard card will be overwritten");
jmasa@643 347 // This line commented out cleans the newly expanded region and
jmasa@643 348 // not the aligned up expanded region.
jmasa@643 349 // jbyte* const end = byte_after(new_region.last());
jmasa@643 350 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 351 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 352 "Expect to be beyond new region unless impacting another region");
duke@435 353 // do nothing if we resized downward.
jmasa@643 354 #ifdef ASSERT
jmasa@643 355 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 356 if (ri != ind) {
jmasa@643 357 // The end of the new committed region should not
jmasa@643 358 // be in any existing region unless it matches
jmasa@643 359 // the start of the next region.
jmasa@643 360 assert(!_committed[ri].contains(end) ||
jmasa@643 361 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 362 "Overlapping committed regions");
jmasa@643 363 }
jmasa@643 364 }
jmasa@643 365 #endif
duke@435 366 if (entry < end) {
duke@435 367 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 368 }
duke@435 369 }
duke@435 370 // In any case, the covered size changes.
duke@435 371 _covered[ind].set_word_size(new_region.word_size());
duke@435 372 if (TraceCardTableModRefBS) {
duke@435 373 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 374 gclog_or_tty->print_cr(" "
duke@435 375 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 376 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 377 ind, _covered[ind].start(),
duke@435 378 ind, _covered[ind].last());
duke@435 379 gclog_or_tty->print_cr(" "
duke@435 380 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 381 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 382 ind, _committed[ind].start(),
duke@435 383 ind, _committed[ind].last());
duke@435 384 gclog_or_tty->print_cr(" "
duke@435 385 " byte_for(start): " INTPTR_FORMAT
duke@435 386 " byte_for(last): " INTPTR_FORMAT,
duke@435 387 byte_for(_covered[ind].start()),
duke@435 388 byte_for(_covered[ind].last()));
duke@435 389 gclog_or_tty->print_cr(" "
duke@435 390 " addr_for(start): " INTPTR_FORMAT
duke@435 391 " addr_for(last): " INTPTR_FORMAT,
duke@435 392 addr_for((jbyte*) _committed[ind].start()),
duke@435 393 addr_for((jbyte*) _committed[ind].last()));
duke@435 394 }
jmasa@1967 395 // Touch the last card of the covered region to show that it
jmasa@1967 396 // is committed (or SEGV).
jmasa@1967 397 debug_only(*byte_for(_covered[ind].last());)
duke@435 398 debug_only(verify_guard();)
duke@435 399 }
duke@435 400
duke@435 401 // Note that these versions are precise! The scanning code has to handle the
duke@435 402 // fact that the write barrier may be either precise or imprecise.
duke@435 403
coleenp@548 404 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
duke@435 405 inline_write_ref_field(field, newVal);
duke@435 406 }
duke@435 407
iveresov@1051 408 /*
iveresov@1051 409 Claimed and deferred bits are used together in G1 during the evacuation
iveresov@1051 410 pause. These bits can have the following state transitions:
iveresov@1051 411 1. The claimed bit can be put over any other card state. Except that
iveresov@1051 412 the "dirty -> dirty and claimed" transition is checked for in
iveresov@1051 413 G1 code and is not used.
iveresov@1051 414 2. Deferred bit can be set only if the previous state of the card
iveresov@1051 415 was either clean or claimed. mark_card_deferred() is wait-free.
iveresov@1051 416 We do not care if the operation is be successful because if
iveresov@1051 417 it does not it will only result in duplicate entry in the update
iveresov@1051 418 buffer because of the "cache-miss". So it's not worth spinning.
iveresov@1051 419 */
iveresov@1051 420
duke@435 421
ysr@777 422 bool CardTableModRefBS::claim_card(size_t card_index) {
ysr@777 423 jbyte val = _byte_map[card_index];
iveresov@1051 424 assert(val != dirty_card_val(), "Shouldn't claim a dirty card");
iveresov@1051 425 while (val == clean_card_val() ||
iveresov@1051 426 (val & (clean_card_mask_val() | claimed_card_val())) != claimed_card_val()) {
iveresov@1051 427 jbyte new_val = val;
iveresov@1051 428 if (val == clean_card_val()) {
iveresov@1051 429 new_val = (jbyte)claimed_card_val();
iveresov@1051 430 } else {
iveresov@1051 431 new_val = val | (jbyte)claimed_card_val();
iveresov@1051 432 }
iveresov@1051 433 jbyte res = Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 434 if (res == val) {
ysr@777 435 return true;
iveresov@1051 436 }
iveresov@1051 437 val = res;
ysr@777 438 }
ysr@777 439 return false;
ysr@777 440 }
ysr@777 441
iveresov@1051 442 bool CardTableModRefBS::mark_card_deferred(size_t card_index) {
iveresov@1051 443 jbyte val = _byte_map[card_index];
iveresov@1051 444 // It's already processed
iveresov@1051 445 if ((val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val()) {
iveresov@1051 446 return false;
iveresov@1051 447 }
iveresov@1051 448 // Cached bit can be installed either on a clean card or on a claimed card.
iveresov@1051 449 jbyte new_val = val;
iveresov@1051 450 if (val == clean_card_val()) {
iveresov@1051 451 new_val = (jbyte)deferred_card_val();
iveresov@1051 452 } else {
iveresov@1051 453 if (val & claimed_card_val()) {
iveresov@1051 454 new_val = val | (jbyte)deferred_card_val();
iveresov@1051 455 }
iveresov@1051 456 }
iveresov@1051 457 if (new_val != val) {
iveresov@1051 458 Atomic::cmpxchg(new_val, &_byte_map[card_index], val);
iveresov@1051 459 }
iveresov@1051 460 return true;
iveresov@1051 461 }
iveresov@1051 462
ysr@2819 463 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
ysr@2819 464 MemRegion mr,
ysr@2889 465 OopsInGenClosure* cl,
ysr@2889 466 CardTableRS* ct) {
duke@435 467 if (!mr.is_empty()) {
jmasa@3294 468 // Caller (process_strong_roots()) claims that all GC threads
jmasa@3294 469 // execute this call. With UseDynamicNumberOfGCThreads now all
jmasa@3294 470 // active GC threads execute this call. The number of active GC
jmasa@3294 471 // threads needs to be passed to par_non_clean_card_iterate_work()
jmasa@3294 472 // to get proper partitioning and termination.
jmasa@3294 473 //
jmasa@3294 474 // This is an example of where n_par_threads() is used instead
jmasa@3294 475 // of workers()->active_workers(). n_par_threads can be set to 0 to
jmasa@3294 476 // turn off parallelism. For example when this code is called as
jmasa@3294 477 // part of verification and SharedHeap::process_strong_roots() is being
jmasa@3294 478 // used, then n_par_threads() may have been set to 0. active_workers
jmasa@3294 479 // is not overloaded with the meaning that it is a switch to disable
jmasa@3294 480 // parallelism and so keeps the meaning of the number of
jmasa@3294 481 // active gc workers. If parallelism has not been shut off by
jmasa@3294 482 // setting n_par_threads to 0, then n_par_threads should be
jmasa@3294 483 // equal to active_workers. When a different mechanism for shutting
jmasa@3294 484 // off parallelism is used, then active_workers can be used in
jmasa@3294 485 // place of n_par_threads.
jmasa@3294 486 // This is an example of a path where n_par_threads is
jmasa@3294 487 // set to 0 to turn off parallism.
jmasa@3294 488 // [7] CardTableModRefBS::non_clean_card_iterate()
jmasa@3294 489 // [8] CardTableRS::younger_refs_in_space_iterate()
jmasa@3294 490 // [9] Generation::younger_refs_in_space_iterate()
jmasa@3294 491 // [10] OneContigSpaceCardGeneration::younger_refs_iterate()
jmasa@3294 492 // [11] CompactingPermGenGen::younger_refs_iterate()
jmasa@3294 493 // [12] CardTableRS::younger_refs_iterate()
jmasa@3294 494 // [13] SharedHeap::process_strong_roots()
jmasa@3294 495 // [14] G1CollectedHeap::verify()
jmasa@3294 496 // [15] Universe::verify()
jmasa@3294 497 // [16] G1CollectedHeap::do_collection_pause_at_safepoint()
jmasa@3294 498 //
jmasa@3294 499 int n_threads = SharedHeap::heap()->n_par_threads();
jmasa@3294 500 bool is_par = n_threads > 0;
jmasa@3294 501 if (is_par) {
duke@435 502 #ifndef SERIALGC
jmasa@3294 503 assert(SharedHeap::heap()->n_par_threads() ==
jmasa@3294 504 SharedHeap::heap()->workers()->active_workers(), "Mismatch");
ysr@2889 505 non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
duke@435 506 #else // SERIALGC
duke@435 507 fatal("Parallel gc not supported here.");
duke@435 508 #endif // SERIALGC
duke@435 509 } else {
ysr@2819 510 // We do not call the non_clean_card_iterate_serial() version below because
ysr@2819 511 // we want to clear the cards (which non_clean_card_iterate_serial() does not
ysr@2889 512 // do for us): clear_cl here does the work of finding contiguous dirty ranges
ysr@2889 513 // of cards to process and clear.
ysr@2889 514
ysr@2889 515 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
ysr@2889 516 cl->gen_boundary());
ysr@2889 517 ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
ysr@2889 518
ysr@2889 519 clear_cl.do_MemRegion(mr);
duke@435 520 }
duke@435 521 }
duke@435 522 }
duke@435 523
ysr@2819 524 // The iterator itself is not MT-aware, but
ysr@2819 525 // MT-aware callers and closures can use this to
ysr@2819 526 // accomplish dirty card iteration in parallel. The
ysr@2819 527 // iterator itself does not clear the dirty cards, or
ysr@2819 528 // change their values in any manner.
ysr@2819 529 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
ysr@2819 530 MemRegionClosure* cl) {
jmasa@3294 531 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 532 assert(!is_par ||
jmasa@3294 533 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 534 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 535 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 536 MemRegion mri = mr.intersection(_covered[i]);
duke@435 537 if (mri.word_size() > 0) {
duke@435 538 jbyte* cur_entry = byte_for(mri.last());
duke@435 539 jbyte* limit = byte_for(mri.start());
duke@435 540 while (cur_entry >= limit) {
duke@435 541 jbyte* next_entry = cur_entry - 1;
duke@435 542 if (*cur_entry != clean_card) {
duke@435 543 size_t non_clean_cards = 1;
duke@435 544 // Should the next card be included in this range of dirty cards.
duke@435 545 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 546 non_clean_cards++;
duke@435 547 cur_entry = next_entry;
duke@435 548 next_entry--;
duke@435 549 }
duke@435 550 // The memory region may not be on a card boundary. So that
duke@435 551 // objects beyond the end of the region are not processed, make
duke@435 552 // cur_cards precise with regard to the end of the memory region.
duke@435 553 MemRegion cur_cards(addr_for(cur_entry),
duke@435 554 non_clean_cards * card_size_in_words);
duke@435 555 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 556 cl->do_MemRegion(dirty_region);
duke@435 557 }
duke@435 558 cur_entry = next_entry;
duke@435 559 }
duke@435 560 }
duke@435 561 }
duke@435 562 }
duke@435 563
duke@435 564 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 565 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 566 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 567 jbyte* cur = byte_for(mr.start());
duke@435 568 jbyte* last = byte_after(mr.last());
duke@435 569 while (cur < last) {
duke@435 570 *cur = dirty_card;
duke@435 571 cur++;
duke@435 572 }
duke@435 573 }
duke@435 574
ysr@777 575 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 576 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 577 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 578 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 579 MemRegion mri = mr.intersection(_covered[i]);
duke@435 580 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 581 }
duke@435 582 }
duke@435 583
duke@435 584 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 585 // Be conservative: only clean cards entirely contained within the
duke@435 586 // region.
duke@435 587 jbyte* cur;
duke@435 588 if (mr.start() == _whole_heap.start()) {
duke@435 589 cur = byte_for(mr.start());
duke@435 590 } else {
duke@435 591 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 592 cur = byte_after(mr.start() - 1);
duke@435 593 }
duke@435 594 jbyte* last = byte_after(mr.last());
duke@435 595 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 596 }
duke@435 597
duke@435 598 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 599 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 600 MemRegion mri = mr.intersection(_covered[i]);
duke@435 601 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 602 }
duke@435 603 }
duke@435 604
ysr@777 605 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 606 jbyte* first = byte_for(mr.start());
ysr@777 607 jbyte* last = byte_after(mr.last());
ysr@777 608 memset(first, dirty_card, last-first);
ysr@777 609 }
ysr@777 610
ysr@2788 611 // Unlike several other card table methods, dirty_card_iterate()
ysr@2788 612 // iterates over dirty cards ranges in increasing address order.
duke@435 613 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 614 MemRegionClosure* cl) {
duke@435 615 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 616 MemRegion mri = mr.intersection(_covered[i]);
duke@435 617 if (!mri.is_empty()) {
duke@435 618 jbyte *cur_entry, *next_entry, *limit;
duke@435 619 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 620 cur_entry <= limit;
duke@435 621 cur_entry = next_entry) {
duke@435 622 next_entry = cur_entry + 1;
duke@435 623 if (*cur_entry == dirty_card) {
duke@435 624 size_t dirty_cards;
duke@435 625 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 626 for (dirty_cards = 1;
duke@435 627 next_entry <= limit && *next_entry == dirty_card;
duke@435 628 dirty_cards++, next_entry++);
duke@435 629 MemRegion cur_cards(addr_for(cur_entry),
duke@435 630 dirty_cards*card_size_in_words);
duke@435 631 cl->do_MemRegion(cur_cards);
duke@435 632 }
duke@435 633 }
duke@435 634 }
duke@435 635 }
duke@435 636 }
duke@435 637
ysr@777 638 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 639 bool reset,
ysr@777 640 int reset_val) {
duke@435 641 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 642 MemRegion mri = mr.intersection(_covered[i]);
duke@435 643 if (!mri.is_empty()) {
duke@435 644 jbyte* cur_entry, *next_entry, *limit;
duke@435 645 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 646 cur_entry <= limit;
duke@435 647 cur_entry = next_entry) {
duke@435 648 next_entry = cur_entry + 1;
duke@435 649 if (*cur_entry == dirty_card) {
duke@435 650 size_t dirty_cards;
duke@435 651 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 652 for (dirty_cards = 1;
duke@435 653 next_entry <= limit && *next_entry == dirty_card;
duke@435 654 dirty_cards++, next_entry++);
duke@435 655 MemRegion cur_cards(addr_for(cur_entry),
duke@435 656 dirty_cards*card_size_in_words);
ysr@777 657 if (reset) {
ysr@777 658 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 659 cur_entry[i] = reset_val;
ysr@777 660 }
duke@435 661 }
duke@435 662 return cur_cards;
duke@435 663 }
duke@435 664 }
duke@435 665 }
duke@435 666 }
duke@435 667 return MemRegion(mr.end(), mr.end());
duke@435 668 }
duke@435 669
duke@435 670 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 671 return card_size * os::vm_page_size();
duke@435 672 }
duke@435 673
duke@435 674 void CardTableModRefBS::verify_guard() {
duke@435 675 // For product build verification
duke@435 676 guarantee(_byte_map[_guard_index] == last_card,
duke@435 677 "card table guard has been modified");
duke@435 678 }
duke@435 679
duke@435 680 void CardTableModRefBS::verify() {
duke@435 681 verify_guard();
duke@435 682 }
duke@435 683
duke@435 684 #ifndef PRODUCT
tonyp@2849 685 void CardTableModRefBS::verify_region(MemRegion mr,
tonyp@2849 686 jbyte val, bool val_equals) {
tonyp@2849 687 jbyte* start = byte_for(mr.start());
tonyp@2849 688 jbyte* end = byte_for(mr.last());
tonyp@2849 689 bool failures = false;
tonyp@2849 690 for (jbyte* curr = start; curr <= end; ++curr) {
tonyp@2849 691 jbyte curr_val = *curr;
tonyp@2849 692 bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
tonyp@2849 693 if (failed) {
tonyp@2849 694 if (!failures) {
tonyp@2849 695 tty->cr();
tonyp@2849 696 tty->print_cr("== CT verification failed: ["PTR_FORMAT","PTR_FORMAT"]");
tonyp@2849 697 tty->print_cr("== %sexpecting value: %d",
tonyp@2849 698 (val_equals) ? "" : "not ", val);
tonyp@2849 699 failures = true;
tonyp@2849 700 }
tonyp@2849 701 tty->print_cr("== card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
tonyp@2849 702 "val: %d", curr, addr_for(curr),
tonyp@2849 703 (HeapWord*) (((size_t) addr_for(curr)) + card_size),
tonyp@2849 704 (int) curr_val);
tonyp@2849 705 }
duke@435 706 }
tonyp@2849 707 guarantee(!failures, "there should not have been any failures");
duke@435 708 }
apetrusenko@1375 709
tonyp@2849 710 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
tonyp@2849 711 verify_region(mr, dirty_card, false /* val_equals */);
tonyp@2849 712 }
apetrusenko@1375 713
apetrusenko@1375 714 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
tonyp@2849 715 verify_region(mr, dirty_card, true /* val_equals */);
apetrusenko@1375 716 }
duke@435 717 #endif
duke@435 718
never@3687 719 void CardTableModRefBS::print_on(outputStream* st) const {
never@3687 720 st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
never@3687 721 _byte_map, _byte_map + _byte_map_size, byte_map_base);
never@3687 722 }
never@3687 723
duke@435 724 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 725 return
duke@435 726 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 727 _rs->is_prev_nonclean_card_val(cv);
duke@435 728 };
duke@435 729
duke@435 730 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 731 return
duke@435 732 cv != clean_card &&
duke@435 733 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 734 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 735 };

mercurial