src/share/vm/memory/cardTableRS.cpp

Wed, 16 Dec 2009 12:54:49 -0500

author
phh
date
Wed, 16 Dec 2009 12:54:49 -0500
changeset 1558
167c2986d91b
parent 1279
bd02caa94611
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6843629: Make current hotspot build part of jdk5 control build
Summary: Source changes for older compilers plus makefile changes.
Reviewed-by: xlu

duke@435 1 /*
xdono@1279 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_cardTableRS.cpp.incl"
duke@435 27
duke@435 28 CardTableRS::CardTableRS(MemRegion whole_heap,
duke@435 29 int max_covered_regions) :
ysr@777 30 GenRemSet(),
ysr@777 31 _cur_youngergen_card_val(youngergenP1_card),
ysr@777 32 _regions_to_iterate(max_covered_regions - 1)
duke@435 33 {
ysr@777 34 #ifndef SERIALGC
ysr@777 35 if (UseG1GC) {
ysr@777 36 _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
ysr@777 37 max_covered_regions);
ysr@777 38 } else {
ysr@777 39 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 40 }
ysr@777 41 #else
ysr@777 42 _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
ysr@777 43 #endif
ysr@777 44 set_bs(_ct_bs);
duke@435 45 _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
duke@435 46 if (_last_cur_val_in_gen == NULL) {
duke@435 47 vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
duke@435 48 }
duke@435 49 for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
duke@435 50 _last_cur_val_in_gen[i] = clean_card_val();
duke@435 51 }
ysr@777 52 _ct_bs->set_CTRS(this);
duke@435 53 }
duke@435 54
duke@435 55 void CardTableRS::resize_covered_region(MemRegion new_region) {
ysr@777 56 _ct_bs->resize_covered_region(new_region);
duke@435 57 }
duke@435 58
duke@435 59 jbyte CardTableRS::find_unused_youngergenP_card_value() {
duke@435 60 for (jbyte v = youngergenP1_card;
duke@435 61 v < cur_youngergen_and_prev_nonclean_card;
duke@435 62 v++) {
duke@435 63 bool seen = false;
ysr@777 64 for (int g = 0; g < _regions_to_iterate; g++) {
duke@435 65 if (_last_cur_val_in_gen[g] == v) {
duke@435 66 seen = true;
duke@435 67 break;
duke@435 68 }
duke@435 69 }
duke@435 70 if (!seen) return v;
duke@435 71 }
duke@435 72 ShouldNotReachHere();
duke@435 73 return 0;
duke@435 74 }
duke@435 75
duke@435 76 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
duke@435 77 // Parallel or sequential, we must always set the prev to equal the
duke@435 78 // last one written.
duke@435 79 if (parallel) {
duke@435 80 // Find a parallel value to be used next.
duke@435 81 jbyte next_val = find_unused_youngergenP_card_value();
duke@435 82 set_cur_youngergen_card_val(next_val);
duke@435 83
duke@435 84 } else {
duke@435 85 // In an sequential traversal we will always write youngergen, so that
duke@435 86 // the inline barrier is correct.
duke@435 87 set_cur_youngergen_card_val(youngergen_card);
duke@435 88 }
duke@435 89 }
duke@435 90
duke@435 91 void CardTableRS::younger_refs_iterate(Generation* g,
duke@435 92 OopsInGenClosure* blk) {
duke@435 93 _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
duke@435 94 g->younger_refs_iterate(blk);
duke@435 95 }
duke@435 96
duke@435 97 class ClearNoncleanCardWrapper: public MemRegionClosure {
duke@435 98 MemRegionClosure* _dirty_card_closure;
duke@435 99 CardTableRS* _ct;
duke@435 100 bool _is_par;
duke@435 101 private:
duke@435 102 // Clears the given card, return true if the corresponding card should be
duke@435 103 // processed.
duke@435 104 bool clear_card(jbyte* entry) {
duke@435 105 if (_is_par) {
duke@435 106 while (true) {
duke@435 107 // In the parallel case, we may have to do this several times.
duke@435 108 jbyte entry_val = *entry;
duke@435 109 assert(entry_val != CardTableRS::clean_card_val(),
duke@435 110 "We shouldn't be looking at clean cards, and this should "
duke@435 111 "be the only place they get cleaned.");
duke@435 112 if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
duke@435 113 || _ct->is_prev_youngergen_card_val(entry_val)) {
duke@435 114 jbyte res =
duke@435 115 Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
duke@435 116 if (res == entry_val) {
duke@435 117 break;
duke@435 118 } else {
duke@435 119 assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
duke@435 120 "The CAS above should only fail if another thread did "
duke@435 121 "a GC write barrier.");
duke@435 122 }
duke@435 123 } else if (entry_val ==
duke@435 124 CardTableRS::cur_youngergen_and_prev_nonclean_card) {
duke@435 125 // Parallelism shouldn't matter in this case. Only the thread
duke@435 126 // assigned to scan the card should change this value.
duke@435 127 *entry = _ct->cur_youngergen_card_val();
duke@435 128 break;
duke@435 129 } else {
duke@435 130 assert(entry_val == _ct->cur_youngergen_card_val(),
duke@435 131 "Should be the only possibility.");
duke@435 132 // In this case, the card was clean before, and become
duke@435 133 // cur_youngergen only because of processing of a promoted object.
duke@435 134 // We don't have to look at the card.
duke@435 135 return false;
duke@435 136 }
duke@435 137 }
duke@435 138 return true;
duke@435 139 } else {
duke@435 140 jbyte entry_val = *entry;
duke@435 141 assert(entry_val != CardTableRS::clean_card_val(),
duke@435 142 "We shouldn't be looking at clean cards, and this should "
duke@435 143 "be the only place they get cleaned.");
duke@435 144 assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
duke@435 145 "This should be possible in the sequential case.");
duke@435 146 *entry = CardTableRS::clean_card_val();
duke@435 147 return true;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151 public:
duke@435 152 ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
duke@435 153 CardTableRS* ct) :
duke@435 154 _dirty_card_closure(dirty_card_closure), _ct(ct) {
duke@435 155 _is_par = (SharedHeap::heap()->n_par_threads() > 0);
duke@435 156 }
duke@435 157 void do_MemRegion(MemRegion mr) {
duke@435 158 // We start at the high end of "mr", walking backwards
duke@435 159 // while accumulating a contiguous dirty range of cards in
duke@435 160 // [start_of_non_clean, end_of_non_clean) which we then
duke@435 161 // process en masse.
duke@435 162 HeapWord* end_of_non_clean = mr.end();
duke@435 163 HeapWord* start_of_non_clean = end_of_non_clean;
duke@435 164 jbyte* entry = _ct->byte_for(mr.last());
duke@435 165 const jbyte* first_entry = _ct->byte_for(mr.start());
duke@435 166 while (entry >= first_entry) {
duke@435 167 HeapWord* cur = _ct->addr_for(entry);
duke@435 168 if (!clear_card(entry)) {
duke@435 169 // We hit a clean card; process any non-empty
duke@435 170 // dirty range accumulated so far.
duke@435 171 if (start_of_non_clean < end_of_non_clean) {
duke@435 172 MemRegion mr2(start_of_non_clean, end_of_non_clean);
duke@435 173 _dirty_card_closure->do_MemRegion(mr2);
duke@435 174 }
duke@435 175 // Reset the dirty window while continuing to
duke@435 176 // look for the next dirty window to process.
duke@435 177 end_of_non_clean = cur;
duke@435 178 start_of_non_clean = end_of_non_clean;
duke@435 179 }
duke@435 180 // Open the left end of the window one card to the left.
duke@435 181 start_of_non_clean = cur;
duke@435 182 // Note that "entry" leads "start_of_non_clean" in
duke@435 183 // its leftward excursion after this point
duke@435 184 // in the loop and, when we hit the left end of "mr",
duke@435 185 // will point off of the left end of the card-table
duke@435 186 // for "mr".
duke@435 187 entry--;
duke@435 188 }
duke@435 189 // If the first card of "mr" was dirty, we will have
duke@435 190 // been left with a dirty window, co-initial with "mr",
duke@435 191 // which we now process.
duke@435 192 if (start_of_non_clean < end_of_non_clean) {
duke@435 193 MemRegion mr2(start_of_non_clean, end_of_non_clean);
duke@435 194 _dirty_card_closure->do_MemRegion(mr2);
duke@435 195 }
duke@435 196 }
duke@435 197 };
duke@435 198 // clean (by dirty->clean before) ==> cur_younger_gen
duke@435 199 // dirty ==> cur_youngergen_and_prev_nonclean_card
duke@435 200 // precleaned ==> cur_youngergen_and_prev_nonclean_card
duke@435 201 // prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card
duke@435 202 // cur-younger-gen ==> cur_younger_gen
duke@435 203 // cur_youngergen_and_prev_nonclean_card ==> no change.
coleenp@548 204 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
duke@435 205 jbyte* entry = ct_bs()->byte_for(field);
duke@435 206 do {
duke@435 207 jbyte entry_val = *entry;
duke@435 208 // We put this first because it's probably the most common case.
duke@435 209 if (entry_val == clean_card_val()) {
duke@435 210 // No threat of contention with cleaning threads.
duke@435 211 *entry = cur_youngergen_card_val();
duke@435 212 return;
duke@435 213 } else if (card_is_dirty_wrt_gen_iter(entry_val)
duke@435 214 || is_prev_youngergen_card_val(entry_val)) {
duke@435 215 // Mark it as both cur and prev youngergen; card cleaning thread will
duke@435 216 // eventually remove the previous stuff.
duke@435 217 jbyte new_val = cur_youngergen_and_prev_nonclean_card;
duke@435 218 jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
duke@435 219 // Did the CAS succeed?
duke@435 220 if (res == entry_val) return;
duke@435 221 // Otherwise, retry, to see the new value.
duke@435 222 continue;
duke@435 223 } else {
duke@435 224 assert(entry_val == cur_youngergen_and_prev_nonclean_card
duke@435 225 || entry_val == cur_youngergen_card_val(),
duke@435 226 "should be only possibilities.");
duke@435 227 return;
duke@435 228 }
duke@435 229 } while (true);
duke@435 230 }
duke@435 231
duke@435 232 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
duke@435 233 OopsInGenClosure* cl) {
ysr@777 234 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
duke@435 235 cl->gen_boundary());
duke@435 236 ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
duke@435 237
ysr@777 238 _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
duke@435 239 dcto_cl, &clear_cl, false);
duke@435 240 }
duke@435 241
duke@435 242 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
duke@435 243 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 244 // Generations younger than gen have been evacuated. We can clear
duke@435 245 // card table entries for gen (we know that it has no pointers
duke@435 246 // to younger gens) and for those below. The card tables for
duke@435 247 // the youngest gen need never be cleared, and those for perm gen
duke@435 248 // will be cleared based on the parameter clear_perm.
duke@435 249 // There's a bit of subtlety in the clear() and invalidate()
duke@435 250 // methods that we exploit here and in invalidate_or_clear()
duke@435 251 // below to avoid missing cards at the fringes. If clear() or
duke@435 252 // invalidate() are changed in the future, this code should
duke@435 253 // be revisited. 20040107.ysr
duke@435 254 Generation* g = gen;
duke@435 255 for(Generation* prev_gen = gch->prev_gen(g);
duke@435 256 prev_gen != NULL;
duke@435 257 g = prev_gen, prev_gen = gch->prev_gen(g)) {
duke@435 258 MemRegion to_be_cleared_mr = g->prev_used_region();
duke@435 259 clear(to_be_cleared_mr);
duke@435 260 }
duke@435 261 // Clear perm gen cards if asked to do so.
duke@435 262 if (clear_perm) {
duke@435 263 MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
duke@435 264 clear(to_be_cleared_mr);
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
duke@435 269 bool perm) {
duke@435 270 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 271 // For each generation gen (and younger and/or perm)
duke@435 272 // invalidate the cards for the currently occupied part
duke@435 273 // of that generation and clear the cards for the
duke@435 274 // unoccupied part of the generation (if any, making use
duke@435 275 // of that generation's prev_used_region to determine that
duke@435 276 // region). No need to do anything for the youngest
duke@435 277 // generation. Also see note#20040107.ysr above.
duke@435 278 Generation* g = gen;
duke@435 279 for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
duke@435 280 g = prev_gen, prev_gen = gch->prev_gen(g)) {
duke@435 281 MemRegion used_mr = g->used_region();
duke@435 282 MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
duke@435 283 if (!to_be_cleared_mr.is_empty()) {
duke@435 284 clear(to_be_cleared_mr);
duke@435 285 }
duke@435 286 invalidate(used_mr);
duke@435 287 if (!younger) break;
duke@435 288 }
duke@435 289 // Clear perm gen cards if asked to do so.
duke@435 290 if (perm) {
duke@435 291 g = gch->perm_gen();
duke@435 292 MemRegion used_mr = g->used_region();
duke@435 293 MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
duke@435 294 if (!to_be_cleared_mr.is_empty()) {
duke@435 295 clear(to_be_cleared_mr);
duke@435 296 }
duke@435 297 invalidate(used_mr);
duke@435 298 }
duke@435 299 }
duke@435 300
duke@435 301
duke@435 302 class VerifyCleanCardClosure: public OopClosure {
coleenp@548 303 private:
coleenp@548 304 HeapWord* _boundary;
coleenp@548 305 HeapWord* _begin;
coleenp@548 306 HeapWord* _end;
coleenp@548 307 protected:
coleenp@548 308 template <class T> void do_oop_work(T* p) {
duke@435 309 HeapWord* jp = (HeapWord*)p;
coleenp@548 310 if (jp >= _begin && jp < _end) {
coleenp@548 311 oop obj = oopDesc::load_decode_heap_oop(p);
coleenp@548 312 guarantee(obj == NULL ||
coleenp@548 313 (HeapWord*)p < _boundary ||
coleenp@548 314 (HeapWord*)obj >= _boundary,
duke@435 315 "pointer on clean card crosses boundary");
duke@435 316 }
duke@435 317 }
coleenp@548 318 public:
coleenp@548 319 VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
coleenp@548 320 _boundary(b), _begin(begin), _end(end) {}
coleenp@548 321 virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); }
coleenp@548 322 virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
duke@435 323 };
duke@435 324
duke@435 325 class VerifyCTSpaceClosure: public SpaceClosure {
coleenp@548 326 private:
duke@435 327 CardTableRS* _ct;
duke@435 328 HeapWord* _boundary;
duke@435 329 public:
duke@435 330 VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
duke@435 331 _ct(ct), _boundary(boundary) {}
coleenp@548 332 virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
duke@435 333 };
duke@435 334
duke@435 335 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
duke@435 336 CardTableRS* _ct;
duke@435 337 public:
duke@435 338 VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
duke@435 339 void do_generation(Generation* gen) {
duke@435 340 // Skip the youngest generation.
duke@435 341 if (gen->level() == 0) return;
duke@435 342 // Normally, we're interested in pointers to younger generations.
duke@435 343 VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
duke@435 344 gen->space_iterate(&blk, true);
duke@435 345 }
duke@435 346 };
duke@435 347
duke@435 348 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
duke@435 349 // We don't need to do young-gen spaces.
duke@435 350 if (s->end() <= gen_boundary) return;
duke@435 351 MemRegion used = s->used_region();
duke@435 352
duke@435 353 jbyte* cur_entry = byte_for(used.start());
duke@435 354 jbyte* limit = byte_after(used.last());
duke@435 355 while (cur_entry < limit) {
duke@435 356 if (*cur_entry == CardTableModRefBS::clean_card) {
duke@435 357 jbyte* first_dirty = cur_entry+1;
duke@435 358 while (first_dirty < limit &&
duke@435 359 *first_dirty == CardTableModRefBS::clean_card) {
duke@435 360 first_dirty++;
duke@435 361 }
duke@435 362 // If the first object is a regular object, and it has a
duke@435 363 // young-to-old field, that would mark the previous card.
duke@435 364 HeapWord* boundary = addr_for(cur_entry);
duke@435 365 HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
duke@435 366 HeapWord* boundary_block = s->block_start(boundary);
duke@435 367 HeapWord* begin = boundary; // Until proven otherwise.
duke@435 368 HeapWord* start_block = boundary_block; // Until proven otherwise.
duke@435 369 if (boundary_block < boundary) {
duke@435 370 if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
duke@435 371 oop boundary_obj = oop(boundary_block);
duke@435 372 if (!boundary_obj->is_objArray() &&
duke@435 373 !boundary_obj->is_typeArray()) {
duke@435 374 guarantee(cur_entry > byte_for(used.start()),
duke@435 375 "else boundary would be boundary_block");
duke@435 376 if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
duke@435 377 begin = boundary_block + s->block_size(boundary_block);
duke@435 378 start_block = begin;
duke@435 379 }
duke@435 380 }
duke@435 381 }
duke@435 382 }
duke@435 383 // Now traverse objects until end.
duke@435 384 HeapWord* cur = start_block;
duke@435 385 VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
duke@435 386 while (cur < end) {
duke@435 387 if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
duke@435 388 oop(cur)->oop_iterate(&verify_blk);
duke@435 389 }
duke@435 390 cur += s->block_size(cur);
duke@435 391 }
duke@435 392 cur_entry = first_dirty;
duke@435 393 } else {
duke@435 394 // We'd normally expect that cur_youngergen_and_prev_nonclean_card
duke@435 395 // is a transient value, that cannot be in the card table
duke@435 396 // except during GC, and thus assert that:
duke@435 397 // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
duke@435 398 // "Illegal CT value");
duke@435 399 // That however, need not hold, as will become clear in the
duke@435 400 // following...
duke@435 401
duke@435 402 // We'd normally expect that if we are in the parallel case,
duke@435 403 // we can't have left a prev value (which would be different
duke@435 404 // from the current value) in the card table, and so we'd like to
duke@435 405 // assert that:
duke@435 406 // guarantee(cur_youngergen_card_val() == youngergen_card
duke@435 407 // || !is_prev_youngergen_card_val(*cur_entry),
duke@435 408 // "Illegal CT value");
duke@435 409 // That, however, may not hold occasionally, because of
duke@435 410 // CMS or MSC in the old gen. To wit, consider the
duke@435 411 // following two simple illustrative scenarios:
duke@435 412 // (a) CMS: Consider the case where a large object L
duke@435 413 // spanning several cards is allocated in the old
duke@435 414 // gen, and has a young gen reference stored in it, dirtying
duke@435 415 // some interior cards. A young collection scans the card,
duke@435 416 // finds a young ref and installs a youngergenP_n value.
duke@435 417 // L then goes dead. Now a CMS collection starts,
duke@435 418 // finds L dead and sweeps it up. Assume that L is
duke@435 419 // abutting _unallocated_blk, so _unallocated_blk is
duke@435 420 // adjusted down to (below) L. Assume further that
duke@435 421 // no young collection intervenes during this CMS cycle.
duke@435 422 // The next young gen cycle will not get to look at this
duke@435 423 // youngergenP_n card since it lies in the unoccupied
duke@435 424 // part of the space.
duke@435 425 // Some young collections later the blocks on this
duke@435 426 // card can be re-allocated either due to direct allocation
duke@435 427 // or due to absorbing promotions. At this time, the
duke@435 428 // before-gc verification will fail the above assert.
duke@435 429 // (b) MSC: In this case, an object L with a young reference
duke@435 430 // is on a card that (therefore) holds a youngergen_n value.
duke@435 431 // Suppose also that L lies towards the end of the used
duke@435 432 // the used space before GC. An MSC collection
duke@435 433 // occurs that compacts to such an extent that this
duke@435 434 // card is no longer in the occupied part of the space.
duke@435 435 // Since current code in MSC does not always clear cards
duke@435 436 // in the unused part of old gen, this stale youngergen_n
duke@435 437 // value is left behind and can later be covered by
duke@435 438 // an object when promotion or direct allocation
duke@435 439 // re-allocates that part of the heap.
duke@435 440 //
duke@435 441 // Fortunately, the presence of such stale card values is
duke@435 442 // "only" a minor annoyance in that subsequent young collections
duke@435 443 // might needlessly scan such cards, but would still never corrupt
duke@435 444 // the heap as a result. However, it's likely not to be a significant
duke@435 445 // performance inhibitor in practice. For instance,
duke@435 446 // some recent measurements with unoccupied cards eagerly cleared
duke@435 447 // out to maintain this invariant, showed next to no
duke@435 448 // change in young collection times; of course one can construct
duke@435 449 // degenerate examples where the cost can be significant.)
duke@435 450 // Note, in particular, that if the "stale" card is modified
duke@435 451 // after re-allocation, it would be dirty, not "stale". Thus,
duke@435 452 // we can never have a younger ref in such a card and it is
duke@435 453 // safe not to scan that card in any collection. [As we see
duke@435 454 // below, we do some unnecessary scanning
duke@435 455 // in some cases in the current parallel scanning algorithm.]
duke@435 456 //
duke@435 457 // The main point below is that the parallel card scanning code
duke@435 458 // deals correctly with these stale card values. There are two main
duke@435 459 // cases to consider where we have a stale "younger gen" value and a
duke@435 460 // "derivative" case to consider, where we have a stale
duke@435 461 // "cur_younger_gen_and_prev_non_clean" value, as will become
duke@435 462 // apparent in the case analysis below.
duke@435 463 // o Case 1. If the stale value corresponds to a younger_gen_n
duke@435 464 // value other than the cur_younger_gen value then the code
duke@435 465 // treats this as being tantamount to a prev_younger_gen
duke@435 466 // card. This means that the card may be unnecessarily scanned.
duke@435 467 // There are two sub-cases to consider:
duke@435 468 // o Case 1a. Let us say that the card is in the occupied part
duke@435 469 // of the generation at the time the collection begins. In
duke@435 470 // that case the card will be either cleared when it is scanned
duke@435 471 // for young pointers, or will be set to cur_younger_gen as a
duke@435 472 // result of promotion. (We have elided the normal case where
duke@435 473 // the scanning thread and the promoting thread interleave
duke@435 474 // possibly resulting in a transient
duke@435 475 // cur_younger_gen_and_prev_non_clean value before settling
duke@435 476 // to cur_younger_gen. [End Case 1a.]
duke@435 477 // o Case 1b. Consider now the case when the card is in the unoccupied
duke@435 478 // part of the space which becomes occupied because of promotions
duke@435 479 // into it during the current young GC. In this case the card
duke@435 480 // will never be scanned for young references. The current
duke@435 481 // code will set the card value to either
duke@435 482 // cur_younger_gen_and_prev_non_clean or leave
duke@435 483 // it with its stale value -- because the promotions didn't
duke@435 484 // result in any younger refs on that card. Of these two
duke@435 485 // cases, the latter will be covered in Case 1a during
duke@435 486 // a subsequent scan. To deal with the former case, we need
duke@435 487 // to further consider how we deal with a stale value of
duke@435 488 // cur_younger_gen_and_prev_non_clean in our case analysis
duke@435 489 // below. This we do in Case 3 below. [End Case 1b]
duke@435 490 // [End Case 1]
duke@435 491 // o Case 2. If the stale value corresponds to cur_younger_gen being
duke@435 492 // a value not necessarily written by a current promotion, the
duke@435 493 // card will not be scanned by the younger refs scanning code.
duke@435 494 // (This is OK since as we argued above such cards cannot contain
duke@435 495 // any younger refs.) The result is that this value will be
duke@435 496 // treated as a prev_younger_gen value in a subsequent collection,
duke@435 497 // which is addressed in Case 1 above. [End Case 2]
duke@435 498 // o Case 3. We here consider the "derivative" case from Case 1b. above
duke@435 499 // because of which we may find a stale
duke@435 500 // cur_younger_gen_and_prev_non_clean card value in the table.
duke@435 501 // Once again, as in Case 1, we consider two subcases, depending
duke@435 502 // on whether the card lies in the occupied or unoccupied part
duke@435 503 // of the space at the start of the young collection.
duke@435 504 // o Case 3a. Let us say the card is in the occupied part of
duke@435 505 // the old gen at the start of the young collection. In that
duke@435 506 // case, the card will be scanned by the younger refs scanning
duke@435 507 // code which will set it to cur_younger_gen. In a subsequent
duke@435 508 // scan, the card will be considered again and get its final
duke@435 509 // correct value. [End Case 3a]
duke@435 510 // o Case 3b. Now consider the case where the card is in the
duke@435 511 // unoccupied part of the old gen, and is occupied as a result
duke@435 512 // of promotions during thus young gc. In that case,
duke@435 513 // the card will not be scanned for younger refs. The presence
duke@435 514 // of newly promoted objects on the card will then result in
duke@435 515 // its keeping the value cur_younger_gen_and_prev_non_clean
duke@435 516 // value, which we have dealt with in Case 3 here. [End Case 3b]
duke@435 517 // [End Case 3]
duke@435 518 //
duke@435 519 // (Please refer to the code in the helper class
duke@435 520 // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
duke@435 521 //
duke@435 522 // The informal arguments above can be tightened into a formal
duke@435 523 // correctness proof and it behooves us to write up such a proof,
duke@435 524 // or to use model checking to prove that there are no lingering
duke@435 525 // concerns.
duke@435 526 //
duke@435 527 // Clearly because of Case 3b one cannot bound the time for
duke@435 528 // which a card will retain what we have called a "stale" value.
duke@435 529 // However, one can obtain a Loose upper bound on the redundant
duke@435 530 // work as a result of such stale values. Note first that any
duke@435 531 // time a stale card lies in the occupied part of the space at
duke@435 532 // the start of the collection, it is scanned by younger refs
duke@435 533 // code and we can define a rank function on card values that
duke@435 534 // declines when this is so. Note also that when a card does not
duke@435 535 // lie in the occupied part of the space at the beginning of a
duke@435 536 // young collection, its rank can either decline or stay unchanged.
duke@435 537 // In this case, no extra work is done in terms of redundant
duke@435 538 // younger refs scanning of that card.
duke@435 539 // Then, the case analysis above reveals that, in the worst case,
duke@435 540 // any such stale card will be scanned unnecessarily at most twice.
duke@435 541 //
duke@435 542 // It is nonethelss advisable to try and get rid of some of this
duke@435 543 // redundant work in a subsequent (low priority) re-design of
duke@435 544 // the card-scanning code, if only to simplify the underlying
duke@435 545 // state machine analysis/proof. ysr 1/28/2002. XXX
duke@435 546 cur_entry++;
duke@435 547 }
duke@435 548 }
duke@435 549 }
duke@435 550
duke@435 551 void CardTableRS::verify() {
duke@435 552 // At present, we only know how to verify the card table RS for
duke@435 553 // generational heaps.
duke@435 554 VerifyCTGenClosure blk(this);
duke@435 555 CollectedHeap* ch = Universe::heap();
duke@435 556 // We will do the perm-gen portion of the card table, too.
duke@435 557 Generation* pg = SharedHeap::heap()->perm_gen();
duke@435 558 HeapWord* pg_boundary = pg->reserved().start();
duke@435 559
duke@435 560 if (ch->kind() == CollectedHeap::GenCollectedHeap) {
duke@435 561 GenCollectedHeap::heap()->generation_iterate(&blk, false);
ysr@777 562 _ct_bs->verify();
duke@435 563
duke@435 564 // If the old gen collections also collect perm, then we are only
duke@435 565 // interested in perm-to-young pointers, not perm-to-old pointers.
duke@435 566 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 567 CollectorPolicy* cp = gch->collector_policy();
duke@435 568 if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
duke@435 569 pg_boundary = gch->get_gen(1)->reserved().start();
duke@435 570 }
duke@435 571 }
duke@435 572 VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
duke@435 573 SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
duke@435 574 }
duke@435 575
duke@435 576
jmasa@441 577 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
duke@435 578 if (!mr.is_empty()) {
duke@435 579 jbyte* cur_entry = byte_for(mr.start());
duke@435 580 jbyte* limit = byte_after(mr.last());
jmasa@441 581 // The region mr may not start on a card boundary so
jmasa@441 582 // the first card may reflect a write to the space
jmasa@441 583 // just prior to mr.
jmasa@441 584 if (!is_aligned(mr.start())) {
jmasa@441 585 cur_entry++;
jmasa@441 586 }
duke@435 587 for (;cur_entry < limit; cur_entry++) {
duke@435 588 guarantee(*cur_entry == CardTableModRefBS::clean_card,
duke@435 589 "Unexpected dirty card found");
duke@435 590 }
duke@435 591 }
duke@435 592 }

mercurial