src/share/vm/opto/regmask.cpp

Mon, 17 Sep 2012 19:39:07 -0700

author
kvn
date
Mon, 17 Sep 2012 19:39:07 -0700
changeset 4103
137868b7aa6f
parent 3882
8c92982cbbc4
child 4478
a7114d3d712e
permissions
-rw-r--r--

7196199: java/text/Bidi/Bug6665028.java failed: Bidi run count incorrect
Summary: Save whole XMM/YMM registers in safepoint interrupt handler.
Reviewed-by: roland, twisti

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "opto/compile.hpp"
stefank@2314 27 #include "opto/regmask.hpp"
stefank@2314 28 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 29 # include "adfiles/ad_x86_32.hpp"
stefank@2314 30 #endif
stefank@2314 31 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 32 # include "adfiles/ad_x86_64.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 35 # include "adfiles/ad_sparc.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 38 # include "adfiles/ad_zero.hpp"
stefank@2314 39 #endif
bobv@2508 40 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 41 # include "adfiles/ad_arm.hpp"
bobv@2508 42 #endif
bobv@2508 43 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 44 # include "adfiles/ad_ppc.hpp"
bobv@2508 45 #endif
duke@435 46
duke@435 47 #define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
duke@435 48
duke@435 49 //-------------Non-zero bit search methods used by RegMask---------------------
duke@435 50 // Find lowest 1, or return 32 if empty
duke@435 51 int find_lowest_bit( uint32 mask ) {
duke@435 52 int n = 0;
duke@435 53 if( (mask & 0xffff) == 0 ) {
duke@435 54 mask >>= 16;
duke@435 55 n += 16;
duke@435 56 }
duke@435 57 if( (mask & 0xff) == 0 ) {
duke@435 58 mask >>= 8;
duke@435 59 n += 8;
duke@435 60 }
duke@435 61 if( (mask & 0xf) == 0 ) {
duke@435 62 mask >>= 4;
duke@435 63 n += 4;
duke@435 64 }
duke@435 65 if( (mask & 0x3) == 0 ) {
duke@435 66 mask >>= 2;
duke@435 67 n += 2;
duke@435 68 }
duke@435 69 if( (mask & 0x1) == 0 ) {
duke@435 70 mask >>= 1;
duke@435 71 n += 1;
duke@435 72 }
duke@435 73 if( mask == 0 ) {
duke@435 74 n = 32;
duke@435 75 }
duke@435 76 return n;
duke@435 77 }
duke@435 78
duke@435 79 // Find highest 1, or return 32 if empty
duke@435 80 int find_hihghest_bit( uint32 mask ) {
duke@435 81 int n = 0;
duke@435 82 if( mask > 0xffff ) {
duke@435 83 mask >>= 16;
duke@435 84 n += 16;
duke@435 85 }
duke@435 86 if( mask > 0xff ) {
duke@435 87 mask >>= 8;
duke@435 88 n += 8;
duke@435 89 }
duke@435 90 if( mask > 0xf ) {
duke@435 91 mask >>= 4;
duke@435 92 n += 4;
duke@435 93 }
duke@435 94 if( mask > 0x3 ) {
duke@435 95 mask >>= 2;
duke@435 96 n += 2;
duke@435 97 }
duke@435 98 if( mask > 0x1 ) {
duke@435 99 mask >>= 1;
duke@435 100 n += 1;
duke@435 101 }
duke@435 102 if( mask == 0 ) {
duke@435 103 n = 32;
duke@435 104 }
duke@435 105 return n;
duke@435 106 }
duke@435 107
duke@435 108 //------------------------------dump-------------------------------------------
duke@435 109
duke@435 110 #ifndef PRODUCT
duke@435 111 void OptoReg::dump( int r ) {
duke@435 112 switch( r ) {
duke@435 113 case Special: tty->print("r---"); break;
duke@435 114 case Bad: tty->print("rBAD"); break;
duke@435 115 default:
duke@435 116 if( r < _last_Mach_Reg ) tty->print(Matcher::regName[r]);
duke@435 117 else tty->print("rS%d",r);
duke@435 118 break;
duke@435 119 }
duke@435 120 }
duke@435 121 #endif
duke@435 122
duke@435 123
duke@435 124 //=============================================================================
duke@435 125 const RegMask RegMask::Empty(
duke@435 126 # define BODY(I) 0,
duke@435 127 FORALL_BODY
duke@435 128 # undef BODY
duke@435 129 0
duke@435 130 );
duke@435 131
kvn@3882 132 //=============================================================================
kvn@3882 133 bool RegMask::is_vector(uint ireg) {
kvn@3882 134 return (ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY);
kvn@3882 135 }
kvn@3882 136
kvn@3882 137 int RegMask::num_registers(uint ireg) {
kvn@3882 138 switch(ireg) {
kvn@3882 139 case Op_VecY:
kvn@3882 140 return 8;
kvn@3882 141 case Op_VecX:
kvn@3882 142 return 4;
kvn@3882 143 case Op_VecD:
kvn@3882 144 case Op_RegD:
kvn@3882 145 case Op_RegL:
kvn@3882 146 #ifdef _LP64
kvn@3882 147 case Op_RegP:
kvn@3882 148 #endif
kvn@3882 149 return 2;
kvn@3882 150 }
kvn@3882 151 // Op_VecS and the rest ideal registers.
kvn@3882 152 return 1;
kvn@3882 153 }
kvn@3882 154
duke@435 155 //------------------------------find_first_pair--------------------------------
duke@435 156 // Find the lowest-numbered register pair in the mask. Return the
duke@435 157 // HIGHEST register number in the pair, or BAD if no pairs.
duke@435 158 OptoReg::Name RegMask::find_first_pair() const {
kvn@3882 159 verify_pairs();
duke@435 160 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 161 if( _A[i] ) { // Found some bits
duke@435 162 int bit = _A[i] & -_A[i]; // Extract low bit
duke@435 163 // Convert to bit number, return hi bit in pair
duke@435 164 return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
duke@435 165 }
duke@435 166 }
duke@435 167 return OptoReg::Bad;
duke@435 168 }
duke@435 169
duke@435 170 //------------------------------ClearToPairs-----------------------------------
duke@435 171 // Clear out partial bits; leave only bit pairs
kvn@3882 172 void RegMask::clear_to_pairs() {
duke@435 173 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 174 int bits = _A[i];
duke@435 175 bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
duke@435 176 bits |= (bits>>1); // Smear 1 hi-bit into a pair
duke@435 177 _A[i] = bits;
duke@435 178 }
kvn@3882 179 verify_pairs();
duke@435 180 }
duke@435 181
duke@435 182 //------------------------------SmearToPairs-----------------------------------
duke@435 183 // Smear out partial bits; leave only bit pairs
kvn@3882 184 void RegMask::smear_to_pairs() {
duke@435 185 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 186 int bits = _A[i];
duke@435 187 bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
duke@435 188 bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
duke@435 189 _A[i] = bits;
duke@435 190 }
kvn@3882 191 verify_pairs();
duke@435 192 }
duke@435 193
duke@435 194 //------------------------------is_aligned_pairs-------------------------------
kvn@3882 195 bool RegMask::is_aligned_pairs() const {
duke@435 196 // Assert that the register mask contains only bit pairs.
duke@435 197 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 198 int bits = _A[i];
duke@435 199 while( bits ) { // Check bits for pairing
duke@435 200 int bit = bits & -bits; // Extract low bit
duke@435 201 // Low bit is not odd means its mis-aligned.
duke@435 202 if( (bit & 0x55555555) == 0 ) return false;
duke@435 203 bits -= bit; // Remove bit from mask
duke@435 204 // Check for aligned adjacent bit
duke@435 205 if( (bits & (bit<<1)) == 0 ) return false;
duke@435 206 bits -= (bit<<1); // Remove other halve of pair
duke@435 207 }
duke@435 208 }
duke@435 209 return true;
duke@435 210 }
duke@435 211
duke@435 212 //------------------------------is_bound1--------------------------------------
duke@435 213 // Return TRUE if the mask contains a single bit
duke@435 214 int RegMask::is_bound1() const {
duke@435 215 if( is_AllStack() ) return false;
duke@435 216 int bit = -1; // Set to hold the one bit allowed
duke@435 217 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 218 if( _A[i] ) { // Found some bits
duke@435 219 if( bit != -1 ) return false; // Already had bits, so fail
duke@435 220 bit = _A[i] & -_A[i]; // Extract 1 bit from mask
duke@435 221 if( bit != _A[i] ) return false; // Found many bits, so fail
duke@435 222 }
duke@435 223 }
duke@435 224 // True for both the empty mask and for a single bit
duke@435 225 return true;
duke@435 226 }
duke@435 227
duke@435 228 //------------------------------is_bound2--------------------------------------
duke@435 229 // Return TRUE if the mask contains an adjacent pair of bits and no other bits.
kvn@3882 230 int RegMask::is_bound_pair() const {
duke@435 231 if( is_AllStack() ) return false;
duke@435 232
duke@435 233 int bit = -1; // Set to hold the one bit allowed
duke@435 234 for( int i = 0; i < RM_SIZE; i++ ) {
duke@435 235 if( _A[i] ) { // Found some bits
duke@435 236 if( bit != -1 ) return false; // Already had bits, so fail
duke@435 237 bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
duke@435 238 if( (bit << 1) != 0 ) { // Bit pair stays in same word?
duke@435 239 if( (bit | (bit<<1)) != _A[i] )
duke@435 240 return false; // Require adjacent bit pair and no more bits
duke@435 241 } else { // Else its a split-pair case
duke@435 242 if( bit != _A[i] ) return false; // Found many bits, so fail
duke@435 243 i++; // Skip iteration forward
duke@435 244 if( _A[i] != 1 ) return false; // Require 1 lo bit in next word
duke@435 245 }
duke@435 246 }
duke@435 247 }
duke@435 248 // True for both the empty mask and for a bit pair
duke@435 249 return true;
duke@435 250 }
duke@435 251
kvn@3882 252 static int low_bits[3] = { 0x55555555, 0x11111111, 0x01010101 };
kvn@3882 253 //------------------------------find_first_set---------------------------------
kvn@3882 254 // Find the lowest-numbered register set in the mask. Return the
kvn@3882 255 // HIGHEST register number in the set, or BAD if no sets.
kvn@3882 256 // Works also for size 1.
kvn@3882 257 OptoReg::Name RegMask::find_first_set(int size) const {
kvn@3882 258 verify_sets(size);
kvn@3882 259 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 260 if (_A[i]) { // Found some bits
kvn@3882 261 int bit = _A[i] & -_A[i]; // Extract low bit
kvn@3882 262 // Convert to bit number, return hi bit in pair
kvn@3882 263 return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
kvn@3882 264 }
kvn@3882 265 }
kvn@3882 266 return OptoReg::Bad;
kvn@3882 267 }
kvn@3882 268
kvn@3882 269 //------------------------------clear_to_sets----------------------------------
kvn@3882 270 // Clear out partial bits; leave only aligned adjacent bit pairs
kvn@3882 271 void RegMask::clear_to_sets(int size) {
kvn@3882 272 if (size == 1) return;
kvn@3882 273 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 274 assert(is_power_of_2(size), "sanity");
kvn@3882 275 int low_bits_mask = low_bits[size>>2];
kvn@3882 276 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 277 int bits = _A[i];
kvn@3882 278 int sets = (bits & low_bits_mask);
kvn@3882 279 for (int j = 1; j < size; j++) {
kvn@3882 280 sets = (bits & (sets<<1)); // filter bits which produce whole sets
kvn@3882 281 }
kvn@3882 282 sets |= (sets>>1); // Smear 1 hi-bit into a set
kvn@3882 283 if (size > 2) {
kvn@3882 284 sets |= (sets>>2); // Smear 2 hi-bits into a set
kvn@3882 285 if (size > 4) {
kvn@3882 286 sets |= (sets>>4); // Smear 4 hi-bits into a set
kvn@3882 287 }
kvn@3882 288 }
kvn@3882 289 _A[i] = sets;
kvn@3882 290 }
kvn@3882 291 verify_sets(size);
kvn@3882 292 }
kvn@3882 293
kvn@3882 294 //------------------------------smear_to_sets----------------------------------
kvn@3882 295 // Smear out partial bits to aligned adjacent bit sets
kvn@3882 296 void RegMask::smear_to_sets(int size) {
kvn@3882 297 if (size == 1) return;
kvn@3882 298 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 299 assert(is_power_of_2(size), "sanity");
kvn@3882 300 int low_bits_mask = low_bits[size>>2];
kvn@3882 301 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 302 int bits = _A[i];
kvn@3882 303 int sets = 0;
kvn@3882 304 for (int j = 0; j < size; j++) {
kvn@3882 305 sets |= (bits & low_bits_mask); // collect partial bits
kvn@3882 306 bits = bits>>1;
kvn@3882 307 }
kvn@3882 308 sets |= (sets<<1); // Smear 1 lo-bit into a set
kvn@3882 309 if (size > 2) {
kvn@3882 310 sets |= (sets<<2); // Smear 2 lo-bits into a set
kvn@3882 311 if (size > 4) {
kvn@3882 312 sets |= (sets<<4); // Smear 4 lo-bits into a set
kvn@3882 313 }
kvn@3882 314 }
kvn@3882 315 _A[i] = sets;
kvn@3882 316 }
kvn@3882 317 verify_sets(size);
kvn@3882 318 }
kvn@3882 319
kvn@3882 320 //------------------------------is_aligned_set--------------------------------
kvn@3882 321 bool RegMask::is_aligned_sets(int size) const {
kvn@3882 322 if (size == 1) return true;
kvn@3882 323 assert(2 <= size && size <= 8, "update low bits table");
kvn@3882 324 assert(is_power_of_2(size), "sanity");
kvn@3882 325 int low_bits_mask = low_bits[size>>2];
kvn@3882 326 // Assert that the register mask contains only bit sets.
kvn@3882 327 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 328 int bits = _A[i];
kvn@3882 329 while (bits) { // Check bits for pairing
kvn@3882 330 int bit = bits & -bits; // Extract low bit
kvn@3882 331 // Low bit is not odd means its mis-aligned.
kvn@3882 332 if ((bit & low_bits_mask) == 0) return false;
kvn@3882 333 // Do extra work since (bit << size) may overflow.
kvn@3882 334 int hi_bit = bit << (size-1); // high bit
kvn@3882 335 int set = hi_bit + ((hi_bit-1) & ~(bit-1));
kvn@3882 336 // Check for aligned adjacent bits in this set
kvn@3882 337 if ((bits & set) != set) return false;
kvn@3882 338 bits -= set; // Remove this set
kvn@3882 339 }
kvn@3882 340 }
kvn@3882 341 return true;
kvn@3882 342 }
kvn@3882 343
kvn@3882 344 //------------------------------is_bound_set-----------------------------------
kvn@3882 345 // Return TRUE if the mask contains one adjacent set of bits and no other bits.
kvn@3882 346 // Works also for size 1.
kvn@3882 347 int RegMask::is_bound_set(int size) const {
kvn@3882 348 if( is_AllStack() ) return false;
kvn@3882 349 assert(1 <= size && size <= 8, "update low bits table");
kvn@3882 350 int bit = -1; // Set to hold the one bit allowed
kvn@3882 351 for (int i = 0; i < RM_SIZE; i++) {
kvn@3882 352 if (_A[i] ) { // Found some bits
kvn@3882 353 if (bit != -1)
kvn@3882 354 return false; // Already had bits, so fail
kvn@3882 355 bit = _A[i] & -_A[i]; // Extract 1 bit from mask
kvn@3882 356 int hi_bit = bit << (size-1); // high bit
kvn@3882 357 if (hi_bit != 0) { // Bit set stays in same word?
kvn@3882 358 int set = hi_bit + ((hi_bit-1) & ~(bit-1));
kvn@3882 359 if (set != _A[i])
kvn@3882 360 return false; // Require adjacent bit set and no more bits
kvn@3882 361 } else { // Else its a split-set case
kvn@3882 362 if (((-1) & ~(bit-1)) != _A[i])
kvn@3882 363 return false; // Found many bits, so fail
kvn@3882 364 i++; // Skip iteration forward and check high part
kvn@3882 365 assert(size <= 8, "update next code");
kvn@3882 366 // The lower 24 bits should be 0 since it is split case and size <= 8.
kvn@3882 367 int set = bit>>24;
kvn@3882 368 set = set & -set; // Remove sign extension.
kvn@3882 369 set = (((set << size) - 1) >> 8);
kvn@3882 370 if (_A[i] != set) return false; // Require 1 lo bit in next word
kvn@3882 371 }
kvn@3882 372 }
kvn@3882 373 }
kvn@3882 374 // True for both the empty mask and for a bit set
kvn@3882 375 return true;
kvn@3882 376 }
kvn@3882 377
duke@435 378 //------------------------------is_UP------------------------------------------
duke@435 379 // UP means register only, Register plus stack, or stack only is DOWN
duke@435 380 bool RegMask::is_UP() const {
duke@435 381 // Quick common case check for DOWN (any stack slot is legal)
duke@435 382 if( is_AllStack() )
duke@435 383 return false;
duke@435 384 // Slower check for any stack bits set (also DOWN)
duke@435 385 if( overlap(Matcher::STACK_ONLY_mask) )
duke@435 386 return false;
duke@435 387 // Not DOWN, so must be UP
duke@435 388 return true;
duke@435 389 }
duke@435 390
duke@435 391 //------------------------------Size-------------------------------------------
duke@435 392 // Compute size of register mask in bits
duke@435 393 uint RegMask::Size() const {
duke@435 394 extern uint8 bitsInByte[256];
duke@435 395 uint sum = 0;
duke@435 396 for( int i = 0; i < RM_SIZE; i++ )
duke@435 397 sum +=
duke@435 398 bitsInByte[(_A[i]>>24) & 0xff] +
duke@435 399 bitsInByte[(_A[i]>>16) & 0xff] +
duke@435 400 bitsInByte[(_A[i]>> 8) & 0xff] +
duke@435 401 bitsInByte[ _A[i] & 0xff];
duke@435 402 return sum;
duke@435 403 }
duke@435 404
duke@435 405 #ifndef PRODUCT
duke@435 406 //------------------------------print------------------------------------------
duke@435 407 void RegMask::dump( ) const {
duke@435 408 tty->print("[");
duke@435 409 RegMask rm = *this; // Structure copy into local temp
duke@435 410
duke@435 411 OptoReg::Name start = rm.find_first_elem(); // Get a register
duke@435 412 if( OptoReg::is_valid(start) ) { // Check for empty mask
duke@435 413 rm.Remove(start); // Yank from mask
duke@435 414 OptoReg::dump(start); // Print register
duke@435 415 OptoReg::Name last = start;
duke@435 416
duke@435 417 // Now I have printed an initial register.
duke@435 418 // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
duke@435 419 // Begin looping over the remaining registers.
duke@435 420 while( 1 ) { //
duke@435 421 OptoReg::Name reg = rm.find_first_elem(); // Get a register
duke@435 422 if( !OptoReg::is_valid(reg) )
duke@435 423 break; // Empty mask, end loop
duke@435 424 rm.Remove(reg); // Yank from mask
duke@435 425
duke@435 426 if( last+1 == reg ) { // See if they are adjacent
duke@435 427 // Adjacent registers just collect into long runs, no printing.
duke@435 428 last = reg;
duke@435 429 } else { // Ending some kind of run
duke@435 430 if( start == last ) { // 1-register run; no special printing
duke@435 431 } else if( start+1 == last ) {
duke@435 432 tty->print(","); // 2-register run; print as "rX,rY"
duke@435 433 OptoReg::dump(last);
duke@435 434 } else { // Multi-register run; print as "rX-rZ"
duke@435 435 tty->print("-");
duke@435 436 OptoReg::dump(last);
duke@435 437 }
duke@435 438 tty->print(","); // Seperate start of new run
duke@435 439 start = last = reg; // Start a new register run
duke@435 440 OptoReg::dump(start); // Print register
duke@435 441 } // End of if ending a register run or not
duke@435 442 } // End of while regmask not empty
duke@435 443
duke@435 444 if( start == last ) { // 1-register run; no special printing
duke@435 445 } else if( start+1 == last ) {
duke@435 446 tty->print(","); // 2-register run; print as "rX,rY"
duke@435 447 OptoReg::dump(last);
duke@435 448 } else { // Multi-register run; print as "rX-rZ"
duke@435 449 tty->print("-");
duke@435 450 OptoReg::dump(last);
duke@435 451 }
duke@435 452 if( rm.is_AllStack() ) tty->print("...");
duke@435 453 }
duke@435 454 tty->print("]");
duke@435 455 }
duke@435 456 #endif

mercurial