src/share/vm/gc_implementation/parallelScavenge/psAdaptiveSizePolicy.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 435
a61af66fc99e
child 1822
0bfd3fb24150
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
duke@435 2 * Copyright 2002-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_psAdaptiveSizePolicy.cpp.incl"
duke@435 27
duke@435 28 #include <math.h>
duke@435 29
duke@435 30 PSAdaptiveSizePolicy::PSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 31 size_t init_promo_size,
duke@435 32 size_t init_survivor_size,
duke@435 33 size_t intra_generation_alignment,
duke@435 34 double gc_pause_goal_sec,
duke@435 35 double gc_minor_pause_goal_sec,
duke@435 36 uint gc_cost_ratio) :
duke@435 37 AdaptiveSizePolicy(init_eden_size,
duke@435 38 init_promo_size,
duke@435 39 init_survivor_size,
duke@435 40 gc_pause_goal_sec,
duke@435 41 gc_cost_ratio),
duke@435 42 _collection_cost_margin_fraction(AdaptiveSizePolicyCollectionCostMargin/
duke@435 43 100.0),
duke@435 44 _intra_generation_alignment(intra_generation_alignment),
duke@435 45 _live_at_last_full_gc(init_promo_size),
duke@435 46 _gc_minor_pause_goal_sec(gc_minor_pause_goal_sec),
duke@435 47 _latest_major_mutator_interval_seconds(0),
duke@435 48 _young_gen_change_for_major_pause_count(0)
duke@435 49 {
duke@435 50 // Sizing policy statistics
duke@435 51 _avg_major_pause =
duke@435 52 new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
duke@435 53 _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 54 _avg_major_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 55
duke@435 56 _avg_base_footprint = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
duke@435 57 _major_pause_old_estimator =
duke@435 58 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 59 _major_pause_young_estimator =
duke@435 60 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 61 _major_collection_estimator =
duke@435 62 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 63
duke@435 64 _young_gen_size_increment_supplement = YoungGenerationSizeSupplement;
duke@435 65 _old_gen_size_increment_supplement = TenuredGenerationSizeSupplement;
duke@435 66
duke@435 67 // Start the timers
duke@435 68 _major_timer.start();
duke@435 69
duke@435 70 _old_gen_policy_is_ready = false;
duke@435 71 }
duke@435 72
duke@435 73 void PSAdaptiveSizePolicy::major_collection_begin() {
duke@435 74 // Update the interval time
duke@435 75 _major_timer.stop();
duke@435 76 // Save most recent collection time
duke@435 77 _latest_major_mutator_interval_seconds = _major_timer.seconds();
duke@435 78 _major_timer.reset();
duke@435 79 _major_timer.start();
duke@435 80 }
duke@435 81
duke@435 82 void PSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 83 double minor_pause_in_ms) {
duke@435 84 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 85 _minor_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 86 minor_pause_in_ms);
duke@435 87 }
duke@435 88
duke@435 89 void PSAdaptiveSizePolicy::major_collection_end(size_t amount_live,
duke@435 90 GCCause::Cause gc_cause) {
duke@435 91 // Update the pause time.
duke@435 92 _major_timer.stop();
duke@435 93
duke@435 94 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 95 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 96 double major_pause_in_seconds = _major_timer.seconds();
duke@435 97 double major_pause_in_ms = major_pause_in_seconds * MILLIUNITS;
duke@435 98
duke@435 99 // Sample for performance counter
duke@435 100 _avg_major_pause->sample(major_pause_in_seconds);
duke@435 101
duke@435 102 // Cost of collection (unit-less)
duke@435 103 double collection_cost = 0.0;
duke@435 104 if ((_latest_major_mutator_interval_seconds > 0.0) &&
duke@435 105 (major_pause_in_seconds > 0.0)) {
duke@435 106 double interval_in_seconds =
duke@435 107 _latest_major_mutator_interval_seconds + major_pause_in_seconds;
duke@435 108 collection_cost =
duke@435 109 major_pause_in_seconds / interval_in_seconds;
duke@435 110 avg_major_gc_cost()->sample(collection_cost);
duke@435 111
duke@435 112 // Sample for performance counter
duke@435 113 _avg_major_interval->sample(interval_in_seconds);
duke@435 114 }
duke@435 115
duke@435 116 // Calculate variables used to estimate pause time vs. gen sizes
duke@435 117 double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
duke@435 118 double promo_size_in_mbytes = ((double)_promo_size)/((double)M);
duke@435 119 _major_pause_old_estimator->update(promo_size_in_mbytes,
duke@435 120 major_pause_in_ms);
duke@435 121 _major_pause_young_estimator->update(eden_size_in_mbytes,
duke@435 122 major_pause_in_ms);
duke@435 123
duke@435 124 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 125 gclog_or_tty->print("psAdaptiveSizePolicy::major_collection_end: "
duke@435 126 "major gc cost: %f average: %f", collection_cost,
duke@435 127 avg_major_gc_cost()->average());
duke@435 128 gclog_or_tty->print_cr(" major pause: %f major period %f",
duke@435 129 major_pause_in_ms,
duke@435 130 _latest_major_mutator_interval_seconds * MILLIUNITS);
duke@435 131 }
duke@435 132
duke@435 133 // Calculate variable used to estimate collection cost vs. gen sizes
duke@435 134 assert(collection_cost >= 0.0, "Expected to be non-negative");
duke@435 135 _major_collection_estimator->update(promo_size_in_mbytes,
duke@435 136 collection_cost);
duke@435 137 }
duke@435 138
duke@435 139 // Update the amount live at the end of a full GC
duke@435 140 _live_at_last_full_gc = amount_live;
duke@435 141
duke@435 142 // The policy does not have enough data until at least some major collections
duke@435 143 // have been done.
duke@435 144 if (_avg_major_pause->count() >= AdaptiveSizePolicyReadyThreshold) {
duke@435 145 _old_gen_policy_is_ready = true;
duke@435 146 }
duke@435 147
duke@435 148 // Interval times use this timer to measure the interval that
duke@435 149 // the mutator runs. Reset after the GC pause has been measured.
duke@435 150 _major_timer.reset();
duke@435 151 _major_timer.start();
duke@435 152 }
duke@435 153
duke@435 154 // If the remaining free space in the old generation is less that
duke@435 155 // that expected to be needed by the next collection, do a full
duke@435 156 // collection now.
duke@435 157 bool PSAdaptiveSizePolicy::should_full_GC(size_t old_free_in_bytes) {
duke@435 158
duke@435 159 // A similar test is done in the scavenge's should_attempt_scavenge(). If
duke@435 160 // this is changed, decide if that test should also be changed.
duke@435 161 bool result = padded_average_promoted_in_bytes() > (float) old_free_in_bytes;
duke@435 162 if (PrintGCDetails && Verbose) {
duke@435 163 if (result) {
duke@435 164 gclog_or_tty->print(" full after scavenge: ");
duke@435 165 } else {
duke@435 166 gclog_or_tty->print(" no full after scavenge: ");
duke@435 167 }
duke@435 168 gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
duke@435 169 " padded_average_promoted " SIZE_FORMAT
duke@435 170 " free in old gen " SIZE_FORMAT,
duke@435 171 (size_t) average_promoted_in_bytes(),
duke@435 172 (size_t) padded_average_promoted_in_bytes(),
duke@435 173 old_free_in_bytes);
duke@435 174 }
duke@435 175 return result;
duke@435 176 }
duke@435 177
duke@435 178 void PSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 179
duke@435 180 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 181
duke@435 182 set_change_old_gen_for_min_pauses(0);
duke@435 183
duke@435 184 set_change_young_gen_for_maj_pauses(0);
duke@435 185 }
duke@435 186
duke@435 187
duke@435 188 // If this is not a full GC, only test and modify the young generation.
duke@435 189
duke@435 190 void PSAdaptiveSizePolicy::compute_generation_free_space(size_t young_live,
duke@435 191 size_t eden_live,
duke@435 192 size_t old_live,
duke@435 193 size_t perm_live,
duke@435 194 size_t cur_eden,
duke@435 195 size_t max_old_gen_size,
duke@435 196 size_t max_eden_size,
duke@435 197 bool is_full_gc,
duke@435 198 GCCause::Cause gc_cause) {
duke@435 199
duke@435 200 // Update statistics
duke@435 201 // Time statistics are updated as we go, update footprint stats here
duke@435 202 _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live);
duke@435 203 avg_young_live()->sample(young_live);
duke@435 204 avg_eden_live()->sample(eden_live);
duke@435 205 if (is_full_gc) {
duke@435 206 // old_live is only accurate after a full gc
duke@435 207 avg_old_live()->sample(old_live);
duke@435 208 }
duke@435 209
duke@435 210 // This code used to return if the policy was not ready , i.e.,
duke@435 211 // policy_is_ready() returning false. The intent was that
duke@435 212 // decisions below needed major collection times and so could
duke@435 213 // not be made before two major collections. A consequence was
duke@435 214 // adjustments to the young generation were not done until after
duke@435 215 // two major collections even if the minor collections times
duke@435 216 // exceeded the requested goals. Now let the young generation
duke@435 217 // adjust for the minor collection times. Major collection times
duke@435 218 // will be zero for the first collection and will naturally be
duke@435 219 // ignored. Tenured generation adjustments are only made at the
duke@435 220 // full collections so until the second major collection has
duke@435 221 // been reached, no tenured generation adjustments will be made.
duke@435 222
duke@435 223 // Until we know better, desired promotion size uses the last calculation
duke@435 224 size_t desired_promo_size = _promo_size;
duke@435 225
duke@435 226 // Start eden at the current value. The desired value that is stored
duke@435 227 // in _eden_size is not bounded by constraints of the heap and can
duke@435 228 // run away.
duke@435 229 //
duke@435 230 // As expected setting desired_eden_size to the current
duke@435 231 // value of desired_eden_size as a starting point
duke@435 232 // caused desired_eden_size to grow way too large and caused
duke@435 233 // an overflow down stream. It may have improved performance in
duke@435 234 // some case but is dangerous.
duke@435 235 size_t desired_eden_size = cur_eden;
duke@435 236
duke@435 237 #ifdef ASSERT
duke@435 238 size_t original_promo_size = desired_promo_size;
duke@435 239 size_t original_eden_size = desired_eden_size;
duke@435 240 #endif
duke@435 241
duke@435 242 // Cache some values. There's a bit of work getting these, so
duke@435 243 // we might save a little time.
duke@435 244 const double major_cost = major_gc_cost();
duke@435 245 const double minor_cost = minor_gc_cost();
duke@435 246
duke@435 247 // Used for diagnostics
duke@435 248 clear_generation_free_space_flags();
duke@435 249
duke@435 250 // Limits on our growth
duke@435 251 size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 252
duke@435 253 // This method sets the desired eden size. That plus the
duke@435 254 // desired survivor space sizes sets the desired young generation
duke@435 255 // size. This methods does not know what the desired survivor
duke@435 256 // size is but expects that other policy will attempt to make
duke@435 257 // the survivor sizes compatible with the live data in the
duke@435 258 // young generation. This limit is an estimate of the space left
duke@435 259 // in the young generation after the survivor spaces have been
duke@435 260 // subtracted out.
duke@435 261 size_t eden_limit = max_eden_size;
duke@435 262
duke@435 263 // But don't force a promo size below the current promo size. Otherwise,
duke@435 264 // the promo size will shrink for no good reason.
duke@435 265 promo_limit = MAX2(promo_limit, _promo_size);
duke@435 266
duke@435 267 const double gc_cost_limit = GCTimeLimit/100.0;
duke@435 268
duke@435 269 // Which way should we go?
duke@435 270 // if pause requirement is not met
duke@435 271 // adjust size of any generation with average paus exceeding
duke@435 272 // the pause limit. Adjust one pause at a time (the larger)
duke@435 273 // and only make adjustments for the major pause at full collections.
duke@435 274 // else if throughput requirement not met
duke@435 275 // adjust the size of the generation with larger gc time. Only
duke@435 276 // adjust one generation at a time.
duke@435 277 // else
duke@435 278 // adjust down the total heap size. Adjust down the larger of the
duke@435 279 // generations.
duke@435 280
duke@435 281 // Add some checks for a threshhold for a change. For example,
duke@435 282 // a change less than the necessary alignment is probably not worth
duke@435 283 // attempting.
duke@435 284
duke@435 285
duke@435 286 if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) ||
duke@435 287 (_avg_major_pause->padded_average() > gc_pause_goal_sec())) {
duke@435 288 //
duke@435 289 // Check pauses
duke@435 290 //
duke@435 291 // Make changes only to affect one of the pauses (the larger)
duke@435 292 // at a time.
duke@435 293 adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 294
duke@435 295 } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) {
duke@435 296 // Adjust only for the minor pause time goal
duke@435 297 adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 298
duke@435 299 } else if(adjusted_mutator_cost() < _throughput_goal) {
duke@435 300 // This branch used to require that (mutator_cost() > 0.0 in 1.4.2.
duke@435 301 // This sometimes resulted in skipping to the minimize footprint
duke@435 302 // code. Change this to try and reduce GC time if mutator time is
duke@435 303 // negative for whatever reason. Or for future consideration,
duke@435 304 // bail out of the code if mutator time is negative.
duke@435 305 //
duke@435 306 // Throughput
duke@435 307 //
duke@435 308 assert(major_cost >= 0.0, "major cost is < 0.0");
duke@435 309 assert(minor_cost >= 0.0, "minor cost is < 0.0");
duke@435 310 // Try to reduce the GC times.
duke@435 311 adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size);
duke@435 312
duke@435 313 } else {
duke@435 314
duke@435 315 // Be conservative about reducing the footprint.
duke@435 316 // Do a minimum number of major collections first.
duke@435 317 // Have reasonable averages for major and minor collections costs.
duke@435 318 if (UseAdaptiveSizePolicyFootprintGoal &&
duke@435 319 young_gen_policy_is_ready() &&
duke@435 320 avg_major_gc_cost()->average() >= 0.0 &&
duke@435 321 avg_minor_gc_cost()->average() >= 0.0) {
duke@435 322 size_t desired_sum = desired_eden_size + desired_promo_size;
duke@435 323 desired_eden_size = adjust_eden_for_footprint(desired_eden_size,
duke@435 324 desired_sum);
duke@435 325 if (is_full_gc) {
duke@435 326 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 327 desired_promo_size = adjust_promo_for_footprint(desired_promo_size,
duke@435 328 desired_sum);
duke@435 329 }
duke@435 330 }
duke@435 331 }
duke@435 332
duke@435 333 // Note we make the same tests as in the code block below; the code
duke@435 334 // seems a little easier to read with the printing in another block.
duke@435 335 if (PrintAdaptiveSizePolicy) {
duke@435 336 if (desired_promo_size > promo_limit) {
duke@435 337 // "free_in_old_gen" was the original value for used for promo_limit
duke@435 338 size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 339 gclog_or_tty->print_cr(
duke@435 340 "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
duke@435 341 " desired_promo_size: " SIZE_FORMAT
duke@435 342 " promo_limit: " SIZE_FORMAT
duke@435 343 " free_in_old_gen: " SIZE_FORMAT
duke@435 344 " max_old_gen_size: " SIZE_FORMAT
duke@435 345 " avg_old_live: " SIZE_FORMAT,
duke@435 346 desired_promo_size, promo_limit, free_in_old_gen,
duke@435 347 max_old_gen_size, (size_t) avg_old_live()->average());
duke@435 348 }
duke@435 349 if (desired_eden_size > eden_limit) {
duke@435 350 gclog_or_tty->print_cr(
duke@435 351 "AdaptiveSizePolicy::compute_generation_free_space limits:"
duke@435 352 " desired_eden_size: " SIZE_FORMAT
duke@435 353 " old_eden_size: " SIZE_FORMAT
duke@435 354 " eden_limit: " SIZE_FORMAT
duke@435 355 " cur_eden: " SIZE_FORMAT
duke@435 356 " max_eden_size: " SIZE_FORMAT
duke@435 357 " avg_young_live: " SIZE_FORMAT,
duke@435 358 desired_eden_size, _eden_size, eden_limit, cur_eden,
duke@435 359 max_eden_size, (size_t)avg_young_live()->average());
duke@435 360 }
duke@435 361 if (gc_cost() > gc_cost_limit) {
duke@435 362 gclog_or_tty->print_cr(
duke@435 363 "AdaptiveSizePolicy::compute_generation_free_space: gc time limit"
duke@435 364 " gc_cost: %f "
duke@435 365 " GCTimeLimit: %d",
duke@435 366 gc_cost(), GCTimeLimit);
duke@435 367 }
duke@435 368 }
duke@435 369
duke@435 370 // Align everything and make a final limit check
duke@435 371 const size_t alignment = _intra_generation_alignment;
duke@435 372 desired_eden_size = align_size_up(desired_eden_size, alignment);
duke@435 373 desired_eden_size = MAX2(desired_eden_size, alignment);
duke@435 374 desired_promo_size = align_size_up(desired_promo_size, alignment);
duke@435 375 desired_promo_size = MAX2(desired_promo_size, alignment);
duke@435 376
duke@435 377 eden_limit = align_size_down(eden_limit, alignment);
duke@435 378 promo_limit = align_size_down(promo_limit, alignment);
duke@435 379
duke@435 380 // Is too much time being spent in GC?
duke@435 381 // Is the heap trying to grow beyond it's limits?
duke@435 382
duke@435 383 const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
duke@435 384 if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) {
duke@435 385
duke@435 386 // eden_limit is the upper limit on the size of eden based on
duke@435 387 // the maximum size of the young generation and the sizes
duke@435 388 // of the survivor space.
duke@435 389 // The question being asked is whether the gc costs are high
duke@435 390 // and the space being recovered by a collection is low.
duke@435 391 // free_in_young_gen is the free space in the young generation
duke@435 392 // after a collection and promo_live is the free space in the old
duke@435 393 // generation after a collection.
duke@435 394 //
duke@435 395 // Use the minimum of the current value of the live in the
duke@435 396 // young gen or the average of the live in the young gen.
duke@435 397 // If the current value drops quickly, that should be taken
duke@435 398 // into account (i.e., don't trigger if the amount of free
duke@435 399 // space has suddenly jumped up). If the current is much
duke@435 400 // higher than the average, use the average since it represents
duke@435 401 // the longer term behavor.
duke@435 402 const size_t live_in_eden = MIN2(eden_live, (size_t) avg_eden_live()->average());
duke@435 403 const size_t free_in_eden = eden_limit > live_in_eden ?
duke@435 404 eden_limit - live_in_eden : 0;
duke@435 405 const size_t total_free_limit = free_in_old_gen + free_in_eden;
duke@435 406 const size_t total_mem = max_old_gen_size + max_eden_size;
duke@435 407 const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
duke@435 408 if (PrintAdaptiveSizePolicy && (Verbose ||
duke@435 409 (total_free_limit < (size_t) mem_free_limit))) {
duke@435 410 gclog_or_tty->print_cr(
duke@435 411 "PSAdaptiveSizePolicy::compute_generation_free_space limits:"
duke@435 412 " promo_limit: " SIZE_FORMAT
duke@435 413 " eden_limit: " SIZE_FORMAT
duke@435 414 " total_free_limit: " SIZE_FORMAT
duke@435 415 " max_old_gen_size: " SIZE_FORMAT
duke@435 416 " max_eden_size: " SIZE_FORMAT
duke@435 417 " mem_free_limit: " SIZE_FORMAT,
duke@435 418 promo_limit, eden_limit, total_free_limit,
duke@435 419 max_old_gen_size, max_eden_size,
duke@435 420 (size_t) mem_free_limit);
duke@435 421 }
duke@435 422
duke@435 423 if (is_full_gc) {
duke@435 424 if (gc_cost() > gc_cost_limit &&
duke@435 425 total_free_limit < (size_t) mem_free_limit) {
duke@435 426 // Collections, on average, are taking too much time, and
duke@435 427 // gc_cost() > gc_cost_limit
duke@435 428 // we have too little space available after a full gc.
duke@435 429 // total_free_limit < mem_free_limit
duke@435 430 // where
duke@435 431 // total_free_limit is the free space available in
duke@435 432 // both generations
duke@435 433 // total_mem is the total space available for allocation
duke@435 434 // in both generations (survivor spaces are not included
duke@435 435 // just as they are not included in eden_limit).
duke@435 436 // mem_free_limit is a fraction of total_mem judged to be an
duke@435 437 // acceptable amount that is still unused.
duke@435 438 // The heap can ask for the value of this variable when deciding
duke@435 439 // whether to thrown an OutOfMemory error.
duke@435 440 // Note that the gc time limit test only works for the collections
duke@435 441 // of the young gen + tenured gen and not for collections of the
duke@435 442 // permanent gen. That is because the calculation of the space
duke@435 443 // freed by the collection is the free space in the young gen +
duke@435 444 // tenured gen.
duke@435 445 // Ignore explicit GC's. Ignoring explicit GC's at this level
duke@435 446 // is the equivalent of the GC did not happen as far as the
duke@435 447 // overhead calculation is concerted (i.e., the flag is not set
duke@435 448 // and the count is not affected). Also the average will not
duke@435 449 // have been updated unless UseAdaptiveSizePolicyWithSystemGC is on.
duke@435 450 if (!GCCause::is_user_requested_gc(gc_cause) &&
duke@435 451 !GCCause::is_serviceability_requested_gc(gc_cause)) {
duke@435 452 inc_gc_time_limit_count();
duke@435 453 if (UseGCOverheadLimit &&
duke@435 454 (gc_time_limit_count() > AdaptiveSizePolicyGCTimeLimitThreshold)){
duke@435 455 // All conditions have been met for throwing an out-of-memory
duke@435 456 _gc_time_limit_exceeded = true;
duke@435 457 // Avoid consecutive OOM due to the gc time limit by resetting
duke@435 458 // the counter.
duke@435 459 reset_gc_time_limit_count();
duke@435 460 }
duke@435 461 _print_gc_time_limit_would_be_exceeded = true;
duke@435 462 }
duke@435 463 } else {
duke@435 464 // Did not exceed overhead limits
duke@435 465 reset_gc_time_limit_count();
duke@435 466 }
duke@435 467 }
duke@435 468 }
duke@435 469
duke@435 470
duke@435 471 // And one last limit check, now that we've aligned things.
duke@435 472 if (desired_eden_size > eden_limit) {
duke@435 473 // If the policy says to get a larger eden but
duke@435 474 // is hitting the limit, don't decrease eden.
duke@435 475 // This can lead to a general drifting down of the
duke@435 476 // eden size. Let the tenuring calculation push more
duke@435 477 // into the old gen.
duke@435 478 desired_eden_size = MAX2(eden_limit, cur_eden);
duke@435 479 }
duke@435 480 desired_promo_size = MIN2(desired_promo_size, promo_limit);
duke@435 481
duke@435 482
duke@435 483 if (PrintAdaptiveSizePolicy) {
duke@435 484 // Timing stats
duke@435 485 gclog_or_tty->print(
duke@435 486 "PSAdaptiveSizePolicy::compute_generation_free_space: costs"
duke@435 487 " minor_time: %f"
duke@435 488 " major_cost: %f"
duke@435 489 " mutator_cost: %f"
duke@435 490 " throughput_goal: %f",
duke@435 491 minor_gc_cost(), major_gc_cost(), mutator_cost(),
duke@435 492 _throughput_goal);
duke@435 493
duke@435 494 // We give more details if Verbose is set
duke@435 495 if (Verbose) {
duke@435 496 gclog_or_tty->print( " minor_pause: %f"
duke@435 497 " major_pause: %f"
duke@435 498 " minor_interval: %f"
duke@435 499 " major_interval: %f"
duke@435 500 " pause_goal: %f",
duke@435 501 _avg_minor_pause->padded_average(),
duke@435 502 _avg_major_pause->padded_average(),
duke@435 503 _avg_minor_interval->average(),
duke@435 504 _avg_major_interval->average(),
duke@435 505 gc_pause_goal_sec());
duke@435 506 }
duke@435 507
duke@435 508 // Footprint stats
duke@435 509 gclog_or_tty->print( " live_space: " SIZE_FORMAT
duke@435 510 " free_space: " SIZE_FORMAT,
duke@435 511 live_space(), free_space());
duke@435 512 // More detail
duke@435 513 if (Verbose) {
duke@435 514 gclog_or_tty->print( " base_footprint: " SIZE_FORMAT
duke@435 515 " avg_young_live: " SIZE_FORMAT
duke@435 516 " avg_old_live: " SIZE_FORMAT,
duke@435 517 (size_t)_avg_base_footprint->average(),
duke@435 518 (size_t)avg_young_live()->average(),
duke@435 519 (size_t)avg_old_live()->average());
duke@435 520 }
duke@435 521
duke@435 522 // And finally, our old and new sizes.
duke@435 523 gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT
duke@435 524 " old_eden_size: " SIZE_FORMAT
duke@435 525 " desired_promo_size: " SIZE_FORMAT
duke@435 526 " desired_eden_size: " SIZE_FORMAT,
duke@435 527 _promo_size, _eden_size,
duke@435 528 desired_promo_size, desired_eden_size);
duke@435 529 gclog_or_tty->cr();
duke@435 530 }
duke@435 531
duke@435 532 decay_supplemental_growth(is_full_gc);
duke@435 533
duke@435 534 set_promo_size(desired_promo_size);
duke@435 535 set_eden_size(desired_eden_size);
duke@435 536 };
duke@435 537
duke@435 538 void PSAdaptiveSizePolicy::decay_supplemental_growth(bool is_full_gc) {
duke@435 539 // Decay the supplemental increment? Decay the supplement growth
duke@435 540 // factor even if it is not used. It is only meant to give a boost
duke@435 541 // to the initial growth and if it is not used, then it was not
duke@435 542 // needed.
duke@435 543 if (is_full_gc) {
duke@435 544 // Don't wait for the threshold value for the major collections. If
duke@435 545 // here, the supplemental growth term was used and should decay.
duke@435 546 if ((_avg_major_pause->count() % TenuredGenerationSizeSupplementDecay)
duke@435 547 == 0) {
duke@435 548 _old_gen_size_increment_supplement =
duke@435 549 _old_gen_size_increment_supplement >> 1;
duke@435 550 }
duke@435 551 } else {
duke@435 552 if ((_avg_minor_pause->count() >= AdaptiveSizePolicyReadyThreshold) &&
duke@435 553 (_avg_minor_pause->count() % YoungGenerationSizeSupplementDecay) == 0) {
duke@435 554 _young_gen_size_increment_supplement =
duke@435 555 _young_gen_size_increment_supplement >> 1;
duke@435 556 }
duke@435 557 }
duke@435 558 }
duke@435 559
duke@435 560 void PSAdaptiveSizePolicy::adjust_for_minor_pause_time(bool is_full_gc,
duke@435 561 size_t* desired_promo_size_ptr, size_t* desired_eden_size_ptr) {
duke@435 562
duke@435 563 // Adjust the young generation size to reduce pause time of
duke@435 564 // of collections.
duke@435 565 //
duke@435 566 // The AdaptiveSizePolicyInitializingSteps test is not used
duke@435 567 // here. It has not seemed to be needed but perhaps should
duke@435 568 // be added for consistency.
duke@435 569 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 570 // reduce eden size
duke@435 571 set_change_young_gen_for_min_pauses(
duke@435 572 decrease_young_gen_for_min_pauses_true);
duke@435 573 *desired_eden_size_ptr = *desired_eden_size_ptr -
duke@435 574 eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 575 } else {
duke@435 576 // EXPERIMENTAL ADJUSTMENT
duke@435 577 // Only record that the estimator indicated such an action.
duke@435 578 // *desired_eden_size_ptr = *desired_eden_size_ptr + eden_heap_delta;
duke@435 579 set_change_young_gen_for_min_pauses(
duke@435 580 increase_young_gen_for_min_pauses_true);
duke@435 581 }
duke@435 582 if (PSAdjustTenuredGenForMinorPause) {
duke@435 583 // If the desired eden size is as small as it will get,
duke@435 584 // try to adjust the old gen size.
duke@435 585 if (*desired_eden_size_ptr <= _intra_generation_alignment) {
duke@435 586 // Vary the old gen size to reduce the young gen pause. This
duke@435 587 // may not be a good idea. This is just a test.
duke@435 588 if (minor_pause_old_estimator()->decrement_will_decrease()) {
duke@435 589 set_change_old_gen_for_min_pauses(
duke@435 590 decrease_old_gen_for_min_pauses_true);
duke@435 591 *desired_promo_size_ptr =
duke@435 592 _promo_size - promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 593 } else {
duke@435 594 set_change_old_gen_for_min_pauses(
duke@435 595 increase_old_gen_for_min_pauses_true);
duke@435 596 size_t promo_heap_delta =
duke@435 597 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 598 if ((*desired_promo_size_ptr + promo_heap_delta) >
duke@435 599 *desired_promo_size_ptr) {
duke@435 600 *desired_promo_size_ptr =
duke@435 601 _promo_size + promo_heap_delta;
duke@435 602 }
duke@435 603 }
duke@435 604 }
duke@435 605 }
duke@435 606 }
duke@435 607
duke@435 608 void PSAdaptiveSizePolicy::adjust_for_pause_time(bool is_full_gc,
duke@435 609 size_t* desired_promo_size_ptr,
duke@435 610 size_t* desired_eden_size_ptr) {
duke@435 611
duke@435 612 size_t promo_heap_delta = 0;
duke@435 613 size_t eden_heap_delta = 0;
duke@435 614 // Add some checks for a threshhold for a change. For example,
duke@435 615 // a change less than the required alignment is probably not worth
duke@435 616 // attempting.
duke@435 617 if (is_full_gc) {
duke@435 618 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 619 }
duke@435 620
duke@435 621 if (_avg_minor_pause->padded_average() > _avg_major_pause->padded_average()) {
duke@435 622 adjust_for_minor_pause_time(is_full_gc,
duke@435 623 desired_promo_size_ptr,
duke@435 624 desired_eden_size_ptr);
duke@435 625 // major pause adjustments
duke@435 626 } else if (is_full_gc) {
duke@435 627 // Adjust for the major pause time only at full gc's because the
duke@435 628 // affects of a change can only be seen at full gc's.
duke@435 629
duke@435 630 // Reduce old generation size to reduce pause?
duke@435 631 if (major_pause_old_estimator()->decrement_will_decrease()) {
duke@435 632 // reduce old generation size
duke@435 633 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 634 promo_heap_delta = promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 635 *desired_promo_size_ptr = _promo_size - promo_heap_delta;
duke@435 636 } else {
duke@435 637 // EXPERIMENTAL ADJUSTMENT
duke@435 638 // Only record that the estimator indicated such an action.
duke@435 639 // *desired_promo_size_ptr = _promo_size +
duke@435 640 // promo_increment_aligned_up(*desired_promo_size_ptr);
duke@435 641 set_change_old_gen_for_maj_pauses(increase_old_gen_for_maj_pauses_true);
duke@435 642 }
duke@435 643 if (PSAdjustYoungGenForMajorPause) {
duke@435 644 // If the promo size is at the minimum (i.e., the old gen
duke@435 645 // size will not actually decrease), consider changing the
duke@435 646 // young gen size.
duke@435 647 if (*desired_promo_size_ptr < _intra_generation_alignment) {
duke@435 648 // If increasing the young generation will decrease the old gen
duke@435 649 // pause, do it.
duke@435 650 // During startup there is noise in the statistics for deciding
duke@435 651 // on whether to increase or decrease the young gen size. For
duke@435 652 // some number of iterations, just try to increase the young
duke@435 653 // gen size if the major pause is too long to try and establish
duke@435 654 // good statistics for later decisions.
duke@435 655 if (major_pause_young_estimator()->increment_will_decrease() ||
duke@435 656 (_young_gen_change_for_major_pause_count
duke@435 657 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 658 set_change_young_gen_for_maj_pauses(
duke@435 659 increase_young_gen_for_maj_pauses_true);
duke@435 660 eden_heap_delta = eden_increment_aligned_up(*desired_eden_size_ptr);
duke@435 661 *desired_eden_size_ptr = _eden_size + eden_heap_delta;
duke@435 662 _young_gen_change_for_major_pause_count++;
duke@435 663 } else {
duke@435 664 // Record that decreasing the young gen size would decrease
duke@435 665 // the major pause
duke@435 666 set_change_young_gen_for_maj_pauses(
duke@435 667 decrease_young_gen_for_maj_pauses_true);
duke@435 668 eden_heap_delta = eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 669 *desired_eden_size_ptr = _eden_size - eden_heap_delta;
duke@435 670 }
duke@435 671 }
duke@435 672 }
duke@435 673 }
duke@435 674
duke@435 675 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 676 gclog_or_tty->print_cr(
duke@435 677 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 678 "adjusting gen sizes for major pause (avg %f goal %f). "
duke@435 679 "desired_promo_size " SIZE_FORMAT "desired_eden_size "
duke@435 680 SIZE_FORMAT
duke@435 681 " promo delta " SIZE_FORMAT " eden delta " SIZE_FORMAT,
duke@435 682 _avg_major_pause->average(), gc_pause_goal_sec(),
duke@435 683 *desired_promo_size_ptr, *desired_eden_size_ptr,
duke@435 684 promo_heap_delta, eden_heap_delta);
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688 void PSAdaptiveSizePolicy::adjust_for_throughput(bool is_full_gc,
duke@435 689 size_t* desired_promo_size_ptr,
duke@435 690 size_t* desired_eden_size_ptr) {
duke@435 691
duke@435 692 // Add some checks for a threshhold for a change. For example,
duke@435 693 // a change less than the required alignment is probably not worth
duke@435 694 // attempting.
duke@435 695 if (is_full_gc) {
duke@435 696 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 697 }
duke@435 698
duke@435 699 if ((gc_cost() + mutator_cost()) == 0.0) {
duke@435 700 return;
duke@435 701 }
duke@435 702
duke@435 703 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 704 gclog_or_tty->print("\nPSAdaptiveSizePolicy::adjust_for_throughput("
duke@435 705 "is_full: %d, promo: " SIZE_FORMAT ", cur_eden: " SIZE_FORMAT "): ",
duke@435 706 is_full_gc, *desired_promo_size_ptr, *desired_eden_size_ptr);
duke@435 707 gclog_or_tty->print_cr("mutator_cost %f major_gc_cost %f "
duke@435 708 "minor_gc_cost %f", mutator_cost(), major_gc_cost(), minor_gc_cost());
duke@435 709 }
duke@435 710
duke@435 711 // Tenured generation
duke@435 712 if (is_full_gc) {
duke@435 713
duke@435 714 // Calculate the change to use for the tenured gen.
duke@435 715 size_t scaled_promo_heap_delta = 0;
duke@435 716 // Can the increment to the generation be scaled?
duke@435 717 if (gc_cost() >= 0.0 && major_gc_cost() >= 0.0) {
duke@435 718 size_t promo_heap_delta =
duke@435 719 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 720 double scale_by_ratio = major_gc_cost() / gc_cost();
duke@435 721 scaled_promo_heap_delta =
duke@435 722 (size_t) (scale_by_ratio * (double) promo_heap_delta);
duke@435 723 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 724 gclog_or_tty->print_cr(
duke@435 725 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 726 SIZE_FORMAT,
duke@435 727 promo_heap_delta, scale_by_ratio, scaled_promo_heap_delta);
duke@435 728 }
duke@435 729 } else if (major_gc_cost() >= 0.0) {
duke@435 730 // Scaling is not going to work. If the major gc time is the
duke@435 731 // larger, give it a full increment.
duke@435 732 if (major_gc_cost() >= minor_gc_cost()) {
duke@435 733 scaled_promo_heap_delta =
duke@435 734 promo_increment_with_supplement_aligned_up(*desired_promo_size_ptr);
duke@435 735 }
duke@435 736 } else {
duke@435 737 // Don't expect to get here but it's ok if it does
duke@435 738 // in the product build since the delta will be 0
duke@435 739 // and nothing will change.
duke@435 740 assert(false, "Unexpected value for gc costs");
duke@435 741 }
duke@435 742
duke@435 743 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 744 case 1:
duke@435 745 // Early in the run the statistics might not be good. Until
duke@435 746 // a specific number of collections have been, use the heuristic
duke@435 747 // that a larger generation size means lower collection costs.
duke@435 748 if (major_collection_estimator()->increment_will_decrease() ||
duke@435 749 (_old_gen_change_for_major_throughput
duke@435 750 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 751 // Increase tenured generation size to reduce major collection cost
duke@435 752 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 753 *desired_promo_size_ptr) {
duke@435 754 *desired_promo_size_ptr = _promo_size + scaled_promo_heap_delta;
duke@435 755 }
duke@435 756 set_change_old_gen_for_throughput(
duke@435 757 increase_old_gen_for_throughput_true);
duke@435 758 _old_gen_change_for_major_throughput++;
duke@435 759 } else {
duke@435 760 // EXPERIMENTAL ADJUSTMENT
duke@435 761 // Record that decreasing the old gen size would decrease
duke@435 762 // the major collection cost but don't do it.
duke@435 763 // *desired_promo_size_ptr = _promo_size -
duke@435 764 // promo_decrement_aligned_down(*desired_promo_size_ptr);
duke@435 765 set_change_old_gen_for_throughput(
duke@435 766 decrease_old_gen_for_throughput_true);
duke@435 767 }
duke@435 768
duke@435 769 break;
duke@435 770 default:
duke@435 771 // Simplest strategy
duke@435 772 if ((*desired_promo_size_ptr + scaled_promo_heap_delta) >
duke@435 773 *desired_promo_size_ptr) {
duke@435 774 *desired_promo_size_ptr = *desired_promo_size_ptr +
duke@435 775 scaled_promo_heap_delta;
duke@435 776 }
duke@435 777 set_change_old_gen_for_throughput(
duke@435 778 increase_old_gen_for_throughput_true);
duke@435 779 _old_gen_change_for_major_throughput++;
duke@435 780 }
duke@435 781
duke@435 782 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 783 gclog_or_tty->print_cr(
duke@435 784 "adjusting tenured gen for throughput (avg %f goal %f). "
duke@435 785 "desired_promo_size " SIZE_FORMAT " promo_delta " SIZE_FORMAT ,
duke@435 786 mutator_cost(), _throughput_goal,
duke@435 787 *desired_promo_size_ptr, scaled_promo_heap_delta);
duke@435 788 }
duke@435 789 }
duke@435 790
duke@435 791 // Young generation
duke@435 792 size_t scaled_eden_heap_delta = 0;
duke@435 793 // Can the increment to the generation be scaled?
duke@435 794 if (gc_cost() >= 0.0 && minor_gc_cost() >= 0.0) {
duke@435 795 size_t eden_heap_delta =
duke@435 796 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 797 double scale_by_ratio = minor_gc_cost() / gc_cost();
duke@435 798 assert(scale_by_ratio <= 1.0 && scale_by_ratio >= 0.0, "Scaling is wrong");
duke@435 799 scaled_eden_heap_delta =
duke@435 800 (size_t) (scale_by_ratio * (double) eden_heap_delta);
duke@435 801 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 802 gclog_or_tty->print_cr(
duke@435 803 "Scaled eden increment: " SIZE_FORMAT " by %f down to "
duke@435 804 SIZE_FORMAT,
duke@435 805 eden_heap_delta, scale_by_ratio, scaled_eden_heap_delta);
duke@435 806 }
duke@435 807 } else if (minor_gc_cost() >= 0.0) {
duke@435 808 // Scaling is not going to work. If the minor gc time is the
duke@435 809 // larger, give it a full increment.
duke@435 810 if (minor_gc_cost() > major_gc_cost()) {
duke@435 811 scaled_eden_heap_delta =
duke@435 812 eden_increment_with_supplement_aligned_up(*desired_eden_size_ptr);
duke@435 813 }
duke@435 814 } else {
duke@435 815 // Don't expect to get here but it's ok if it does
duke@435 816 // in the product build since the delta will be 0
duke@435 817 // and nothing will change.
duke@435 818 assert(false, "Unexpected value for gc costs");
duke@435 819 }
duke@435 820
duke@435 821 // Use a heuristic for some number of collections to give
duke@435 822 // the averages time to settle down.
duke@435 823 switch (AdaptiveSizeThroughPutPolicy) {
duke@435 824 case 1:
duke@435 825 if (minor_collection_estimator()->increment_will_decrease() ||
duke@435 826 (_young_gen_change_for_minor_throughput
duke@435 827 <= AdaptiveSizePolicyInitializingSteps)) {
duke@435 828 // Expand young generation size to reduce frequency of
duke@435 829 // of collections.
duke@435 830 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 831 *desired_eden_size_ptr) {
duke@435 832 *desired_eden_size_ptr =
duke@435 833 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 834 }
duke@435 835 set_change_young_gen_for_throughput(
duke@435 836 increase_young_gen_for_througput_true);
duke@435 837 _young_gen_change_for_minor_throughput++;
duke@435 838 } else {
duke@435 839 // EXPERIMENTAL ADJUSTMENT
duke@435 840 // Record that decreasing the young gen size would decrease
duke@435 841 // the minor collection cost but don't do it.
duke@435 842 // *desired_eden_size_ptr = _eden_size -
duke@435 843 // eden_decrement_aligned_down(*desired_eden_size_ptr);
duke@435 844 set_change_young_gen_for_throughput(
duke@435 845 decrease_young_gen_for_througput_true);
duke@435 846 }
duke@435 847 break;
duke@435 848 default:
duke@435 849 if ((*desired_eden_size_ptr + scaled_eden_heap_delta) >
duke@435 850 *desired_eden_size_ptr) {
duke@435 851 *desired_eden_size_ptr =
duke@435 852 *desired_eden_size_ptr + scaled_eden_heap_delta;
duke@435 853 }
duke@435 854 set_change_young_gen_for_throughput(
duke@435 855 increase_young_gen_for_througput_true);
duke@435 856 _young_gen_change_for_minor_throughput++;
duke@435 857 }
duke@435 858
duke@435 859 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 860 gclog_or_tty->print_cr(
duke@435 861 "adjusting eden for throughput (avg %f goal %f). desired_eden_size "
duke@435 862 SIZE_FORMAT " eden delta " SIZE_FORMAT "\n",
duke@435 863 mutator_cost(), _throughput_goal,
duke@435 864 *desired_eden_size_ptr, scaled_eden_heap_delta);
duke@435 865 }
duke@435 866 }
duke@435 867
duke@435 868 size_t PSAdaptiveSizePolicy::adjust_promo_for_footprint(
duke@435 869 size_t desired_promo_size, size_t desired_sum) {
duke@435 870 assert(desired_promo_size <= desired_sum, "Inconsistent parameters");
duke@435 871 set_decrease_for_footprint(decrease_old_gen_for_footprint_true);
duke@435 872
duke@435 873 size_t change = promo_decrement(desired_promo_size);
duke@435 874 change = scale_down(change, desired_promo_size, desired_sum);
duke@435 875
duke@435 876 size_t reduced_size = desired_promo_size - change;
duke@435 877
duke@435 878 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 879 gclog_or_tty->print_cr(
duke@435 880 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 881 "adjusting tenured gen for footprint. "
duke@435 882 "starting promo size " SIZE_FORMAT
duke@435 883 " reduced promo size " SIZE_FORMAT,
duke@435 884 " promo delta " SIZE_FORMAT,
duke@435 885 desired_promo_size, reduced_size, change );
duke@435 886 }
duke@435 887
duke@435 888 assert(reduced_size <= desired_promo_size, "Inconsistent result");
duke@435 889 return reduced_size;
duke@435 890 }
duke@435 891
duke@435 892 size_t PSAdaptiveSizePolicy::adjust_eden_for_footprint(
duke@435 893 size_t desired_eden_size, size_t desired_sum) {
duke@435 894 assert(desired_eden_size <= desired_sum, "Inconsistent parameters");
duke@435 895 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 896
duke@435 897 size_t change = eden_decrement(desired_eden_size);
duke@435 898 change = scale_down(change, desired_eden_size, desired_sum);
duke@435 899
duke@435 900 size_t reduced_size = desired_eden_size - change;
duke@435 901
duke@435 902 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 903 gclog_or_tty->print_cr(
duke@435 904 "AdaptiveSizePolicy::compute_generation_free_space "
duke@435 905 "adjusting eden for footprint. "
duke@435 906 " starting eden size " SIZE_FORMAT
duke@435 907 " reduced eden size " SIZE_FORMAT
duke@435 908 " eden delta " SIZE_FORMAT,
duke@435 909 desired_eden_size, reduced_size, change);
duke@435 910 }
duke@435 911
duke@435 912 assert(reduced_size <= desired_eden_size, "Inconsistent result");
duke@435 913 return reduced_size;
duke@435 914 }
duke@435 915
duke@435 916 // Scale down "change" by the factor
duke@435 917 // part / total
duke@435 918 // Don't align the results.
duke@435 919
duke@435 920 size_t PSAdaptiveSizePolicy::scale_down(size_t change,
duke@435 921 double part,
duke@435 922 double total) {
duke@435 923 assert(part <= total, "Inconsistent input");
duke@435 924 size_t reduced_change = change;
duke@435 925 if (total > 0) {
duke@435 926 double fraction = part / total;
duke@435 927 reduced_change = (size_t) (fraction * (double) change);
duke@435 928 }
duke@435 929 assert(reduced_change <= change, "Inconsistent result");
duke@435 930 return reduced_change;
duke@435 931 }
duke@435 932
duke@435 933 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden,
duke@435 934 uint percent_change) {
duke@435 935 size_t eden_heap_delta;
duke@435 936 eden_heap_delta = cur_eden / 100 * percent_change;
duke@435 937 return eden_heap_delta;
duke@435 938 }
duke@435 939
duke@435 940 size_t PSAdaptiveSizePolicy::eden_increment(size_t cur_eden) {
duke@435 941 return eden_increment(cur_eden, YoungGenerationSizeIncrement);
duke@435 942 }
duke@435 943
duke@435 944 size_t PSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 945 size_t result = eden_increment(cur_eden, YoungGenerationSizeIncrement);
duke@435 946 return align_size_up(result, _intra_generation_alignment);
duke@435 947 }
duke@435 948
duke@435 949 size_t PSAdaptiveSizePolicy::eden_increment_aligned_down(size_t cur_eden) {
duke@435 950 size_t result = eden_increment(cur_eden);
duke@435 951 return align_size_down(result, _intra_generation_alignment);
duke@435 952 }
duke@435 953
duke@435 954 size_t PSAdaptiveSizePolicy::eden_increment_with_supplement_aligned_up(
duke@435 955 size_t cur_eden) {
duke@435 956 size_t result = eden_increment(cur_eden,
duke@435 957 YoungGenerationSizeIncrement + _young_gen_size_increment_supplement);
duke@435 958 return align_size_up(result, _intra_generation_alignment);
duke@435 959 }
duke@435 960
duke@435 961 size_t PSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 962 size_t eden_heap_delta = eden_decrement(cur_eden);
duke@435 963 return align_size_down(eden_heap_delta, _intra_generation_alignment);
duke@435 964 }
duke@435 965
duke@435 966 size_t PSAdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
duke@435 967 size_t eden_heap_delta = eden_increment(cur_eden) /
duke@435 968 AdaptiveSizeDecrementScaleFactor;
duke@435 969 return eden_heap_delta;
duke@435 970 }
duke@435 971
duke@435 972 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo,
duke@435 973 uint percent_change) {
duke@435 974 size_t promo_heap_delta;
duke@435 975 promo_heap_delta = cur_promo / 100 * percent_change;
duke@435 976 return promo_heap_delta;
duke@435 977 }
duke@435 978
duke@435 979 size_t PSAdaptiveSizePolicy::promo_increment(size_t cur_promo) {
duke@435 980 return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 981 }
duke@435 982
duke@435 983 size_t PSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 984 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 985 return align_size_up(result, _intra_generation_alignment);
duke@435 986 }
duke@435 987
duke@435 988 size_t PSAdaptiveSizePolicy::promo_increment_aligned_down(size_t cur_promo) {
duke@435 989 size_t result = promo_increment(cur_promo, TenuredGenerationSizeIncrement);
duke@435 990 return align_size_down(result, _intra_generation_alignment);
duke@435 991 }
duke@435 992
duke@435 993 size_t PSAdaptiveSizePolicy::promo_increment_with_supplement_aligned_up(
duke@435 994 size_t cur_promo) {
duke@435 995 size_t result = promo_increment(cur_promo,
duke@435 996 TenuredGenerationSizeIncrement + _old_gen_size_increment_supplement);
duke@435 997 return align_size_up(result, _intra_generation_alignment);
duke@435 998 }
duke@435 999
duke@435 1000 size_t PSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 1001 size_t promo_heap_delta = promo_decrement(cur_promo);
duke@435 1002 return align_size_down(promo_heap_delta, _intra_generation_alignment);
duke@435 1003 }
duke@435 1004
duke@435 1005 size_t PSAdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
duke@435 1006 size_t promo_heap_delta = promo_increment(cur_promo);
duke@435 1007 promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
duke@435 1008 return promo_heap_delta;
duke@435 1009 }
duke@435 1010
duke@435 1011 int PSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 1012 bool is_survivor_overflow,
duke@435 1013 int tenuring_threshold,
duke@435 1014 size_t survivor_limit) {
duke@435 1015 assert(survivor_limit >= _intra_generation_alignment,
duke@435 1016 "survivor_limit too small");
duke@435 1017 assert((size_t)align_size_down(survivor_limit, _intra_generation_alignment)
duke@435 1018 == survivor_limit, "survivor_limit not aligned");
duke@435 1019
duke@435 1020 // This method is called even if the tenuring threshold and survivor
duke@435 1021 // spaces are not adjusted so that the averages are sampled above.
duke@435 1022 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 1023 !young_gen_policy_is_ready()) {
duke@435 1024 return tenuring_threshold;
duke@435 1025 }
duke@435 1026
duke@435 1027 // We'll decide whether to increase or decrease the tenuring
duke@435 1028 // threshold based partly on the newly computed survivor size
duke@435 1029 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 1030 // decrement the threshold).
duke@435 1031 bool incr_tenuring_threshold = false;
duke@435 1032 bool decr_tenuring_threshold = false;
duke@435 1033
duke@435 1034 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 1035 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 1036 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 1037
duke@435 1038 if (!is_survivor_overflow) {
duke@435 1039 // Keep running averages on how much survived
duke@435 1040
duke@435 1041 // We use the tenuring threshold to equalize the cost of major
duke@435 1042 // and minor collections.
duke@435 1043 // ThresholdTolerance is used to indicate how sensitive the
duke@435 1044 // tenuring threshold is to differences in cost betweent the
duke@435 1045 // collection types.
duke@435 1046
duke@435 1047 // Get the times of interest. This involves a little work, so
duke@435 1048 // we cache the values here.
duke@435 1049 const double major_cost = major_gc_cost();
duke@435 1050 const double minor_cost = minor_gc_cost();
duke@435 1051
duke@435 1052 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 1053 // Minor times are getting too long; lower the threshold so
duke@435 1054 // less survives and more is promoted.
duke@435 1055 decr_tenuring_threshold = true;
duke@435 1056 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 1057 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 1058 // Major times are too long, so we want less promotion.
duke@435 1059 incr_tenuring_threshold = true;
duke@435 1060 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 1061 }
duke@435 1062
duke@435 1063 } else {
duke@435 1064 // Survivor space overflow occurred, so promoted and survived are
duke@435 1065 // not accurate. We'll make our best guess by combining survived
duke@435 1066 // and promoted and count them as survivors.
duke@435 1067 //
duke@435 1068 // We'll lower the tenuring threshold to see if we can correct
duke@435 1069 // things. Also, set the survivor size conservatively. We're
duke@435 1070 // trying to avoid many overflows from occurring if defnew size
duke@435 1071 // is just too small.
duke@435 1072
duke@435 1073 decr_tenuring_threshold = true;
duke@435 1074 }
duke@435 1075
duke@435 1076 // The padded average also maintains a deviation from the average;
duke@435 1077 // we use this to see how good of an estimate we have of what survived.
duke@435 1078 // We're trying to pad the survivor size as little as possible without
duke@435 1079 // overflowing the survivor spaces.
duke@435 1080 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
duke@435 1081 _intra_generation_alignment);
duke@435 1082 target_size = MAX2(target_size, _intra_generation_alignment);
duke@435 1083
duke@435 1084 if (target_size > survivor_limit) {
duke@435 1085 // Target size is bigger than we can handle. Let's also reduce
duke@435 1086 // the tenuring threshold.
duke@435 1087 target_size = survivor_limit;
duke@435 1088 decr_tenuring_threshold = true;
duke@435 1089 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1090 }
duke@435 1091
duke@435 1092 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1093 // We test for decrementing first, as we might have hit the target size
duke@435 1094 // limit.
duke@435 1095 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1096 if (tenuring_threshold > 1) {
duke@435 1097 tenuring_threshold--;
duke@435 1098 }
duke@435 1099 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1100 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1101 tenuring_threshold++;
duke@435 1102 }
duke@435 1103 }
duke@435 1104
duke@435 1105 // We keep a running average of the amount promoted which is used
duke@435 1106 // to decide when we should collect the old generation (when
duke@435 1107 // the amount of old gen free space is less than what we expect to
duke@435 1108 // promote).
duke@435 1109
duke@435 1110 if (PrintAdaptiveSizePolicy) {
duke@435 1111 // A little more detail if Verbose is on
duke@435 1112 if (Verbose) {
duke@435 1113 gclog_or_tty->print( " avg_survived: %f"
duke@435 1114 " avg_deviation: %f",
duke@435 1115 _avg_survived->average(),
duke@435 1116 _avg_survived->deviation());
duke@435 1117 }
duke@435 1118
duke@435 1119 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1120 _avg_survived->padded_average());
duke@435 1121
duke@435 1122 if (Verbose) {
duke@435 1123 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1124 " avg_promoted_dev: %f",
duke@435 1125 avg_promoted()->average(),
duke@435 1126 avg_promoted()->deviation());
duke@435 1127 }
duke@435 1128
duke@435 1129 gclog_or_tty->print( " avg_promoted_padded_avg: %f"
duke@435 1130 " avg_pretenured_padded_avg: %f"
duke@435 1131 " tenuring_thresh: %d"
duke@435 1132 " target_size: " SIZE_FORMAT,
duke@435 1133 avg_promoted()->padded_average(),
duke@435 1134 _avg_pretenured->padded_average(),
duke@435 1135 tenuring_threshold, target_size);
duke@435 1136 tty->cr();
duke@435 1137 }
duke@435 1138
duke@435 1139 set_survivor_size(target_size);
duke@435 1140
duke@435 1141 return tenuring_threshold;
duke@435 1142 }
duke@435 1143
duke@435 1144 void PSAdaptiveSizePolicy::update_averages(bool is_survivor_overflow,
duke@435 1145 size_t survived,
duke@435 1146 size_t promoted) {
duke@435 1147 // Update averages
duke@435 1148 if (!is_survivor_overflow) {
duke@435 1149 // Keep running averages on how much survived
duke@435 1150 _avg_survived->sample(survived);
duke@435 1151 } else {
duke@435 1152 size_t survived_guess = survived + promoted;
duke@435 1153 _avg_survived->sample(survived_guess);
duke@435 1154 }
duke@435 1155 avg_promoted()->sample(promoted + _avg_pretenured->padded_average());
duke@435 1156
duke@435 1157 if (PrintAdaptiveSizePolicy) {
duke@435 1158 gclog_or_tty->print(
duke@435 1159 "AdaptiveSizePolicy::compute_survivor_space_size_and_thresh:"
duke@435 1160 " survived: " SIZE_FORMAT
duke@435 1161 " promoted: " SIZE_FORMAT
duke@435 1162 " overflow: %s",
duke@435 1163 survived, promoted, is_survivor_overflow ? "true" : "false");
duke@435 1164 }
duke@435 1165 }
duke@435 1166
duke@435 1167 bool PSAdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st)
duke@435 1168 const {
duke@435 1169
duke@435 1170 if (!UseAdaptiveSizePolicy) return false;
duke@435 1171
duke@435 1172 return AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1173 st,
duke@435 1174 PSScavenge::tenuring_threshold());
duke@435 1175 }

mercurial