src/share/vm/opto/phaseX.hpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8193
70649f10b88c
child 8604
04d83ba48607
child 8893
aea833250879
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_PHASEX_HPP
stefank@2314 26 #define SHARE_VM_OPTO_PHASEX_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/dict.hpp"
stefank@2314 29 #include "libadt/vectset.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
stefank@2314 31 #include "opto/memnode.hpp"
stefank@2314 32 #include "opto/node.hpp"
stefank@2314 33 #include "opto/phase.hpp"
stefank@2314 34 #include "opto/type.hpp"
stefank@2314 35
duke@435 36 class Compile;
duke@435 37 class ConINode;
duke@435 38 class ConLNode;
duke@435 39 class Node;
duke@435 40 class Type;
duke@435 41 class PhaseTransform;
duke@435 42 class PhaseGVN;
duke@435 43 class PhaseIterGVN;
duke@435 44 class PhaseCCP;
duke@435 45 class PhasePeephole;
duke@435 46 class PhaseRegAlloc;
duke@435 47
duke@435 48
duke@435 49 //-----------------------------------------------------------------------------
duke@435 50 // Expandable closed hash-table of nodes, initialized to NULL.
duke@435 51 // Note that the constructor just zeros things
duke@435 52 // Storage is reclaimed when the Arena's lifetime is over.
duke@435 53 class NodeHash : public StackObj {
duke@435 54 protected:
duke@435 55 Arena *_a; // Arena to allocate in
duke@435 56 uint _max; // Size of table (power of 2)
duke@435 57 uint _inserts; // For grow and debug, count of hash_inserts
duke@435 58 uint _insert_limit; // 'grow' when _inserts reaches _insert_limit
duke@435 59 Node **_table; // Hash table of Node pointers
duke@435 60 Node *_sentinel; // Replaces deleted entries in hash table
duke@435 61
duke@435 62 public:
duke@435 63 NodeHash(uint est_max_size);
duke@435 64 NodeHash(Arena *arena, uint est_max_size);
duke@435 65 NodeHash(NodeHash *use_this_state);
duke@435 66 #ifdef ASSERT
duke@435 67 ~NodeHash(); // Unlock all nodes upon destruction of table.
duke@435 68 void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
duke@435 69 #endif
duke@435 70 Node *hash_find(const Node*);// Find an equivalent version in hash table
duke@435 71 Node *hash_find_insert(Node*);// If not in table insert else return found node
duke@435 72 void hash_insert(Node*); // Insert into hash table
duke@435 73 bool hash_delete(const Node*);// Replace with _sentinel in hash table
duke@435 74 void check_grow() {
duke@435 75 _inserts++;
duke@435 76 if( _inserts == _insert_limit ) { grow(); }
duke@435 77 assert( _inserts <= _insert_limit, "hash table overflow");
duke@435 78 assert( _inserts < _max, "hash table overflow" );
duke@435 79 }
duke@435 80 static uint round_up(uint); // Round up to nearest power of 2
duke@435 81 void grow(); // Grow _table to next power of 2 and rehash
duke@435 82 // Return 75% of _max, rounded up.
duke@435 83 uint insert_limit() const { return _max - (_max>>2); }
duke@435 84
duke@435 85 void clear(); // Set all entries to NULL, keep storage.
duke@435 86 // Size of hash table
duke@435 87 uint size() const { return _max; }
duke@435 88 // Return Node* at index in table
duke@435 89 Node *at(uint table_index) {
duke@435 90 assert(table_index < _max, "Must be within table");
duke@435 91 return _table[table_index];
duke@435 92 }
duke@435 93
duke@435 94 void remove_useless_nodes(VectorSet &useful); // replace with sentinel
roland@6313 95 void replace_with(NodeHash* nh);
roland@6313 96 void check_no_speculative_types(); // Check no speculative part for type nodes in table
duke@435 97
duke@435 98 Node *sentinel() { return _sentinel; }
duke@435 99
duke@435 100 #ifndef PRODUCT
duke@435 101 Node *find_index(uint idx); // For debugging
duke@435 102 void dump(); // For debugging, dump statistics
duke@435 103 #endif
duke@435 104 uint _grows; // For debugging, count of table grow()s
duke@435 105 uint _look_probes; // For debugging, count of hash probes
duke@435 106 uint _lookup_hits; // For debugging, count of hash_finds
duke@435 107 uint _lookup_misses; // For debugging, count of hash_finds
duke@435 108 uint _insert_probes; // For debugging, count of hash probes
duke@435 109 uint _delete_probes; // For debugging, count of hash probes for deletes
duke@435 110 uint _delete_hits; // For debugging, count of hash probes for deletes
duke@435 111 uint _delete_misses; // For debugging, count of hash probes for deletes
duke@435 112 uint _total_inserts; // For debugging, total inserts into hash table
duke@435 113 uint _total_insert_probes; // For debugging, total probes while inserting
duke@435 114 };
duke@435 115
duke@435 116
duke@435 117 //-----------------------------------------------------------------------------
duke@435 118 // Map dense integer indices to Types. Uses classic doubling-array trick.
duke@435 119 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
duke@435 120 // Note that the constructor just zeros things, and since I use Arena
duke@435 121 // allocation I do not need a destructor to reclaim storage.
duke@435 122 // Despite the general name, this class is customized for use by PhaseTransform.
duke@435 123 class Type_Array : public StackObj {
duke@435 124 Arena *_a; // Arena to allocate in
duke@435 125 uint _max;
duke@435 126 const Type **_types;
duke@435 127 void grow( uint i ); // Grow array node to fit
duke@435 128 const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
duke@435 129 { return (i<_max) ? _types[i] : (Type*)NULL; }
duke@435 130 friend class PhaseTransform;
duke@435 131 public:
duke@435 132 Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
duke@435 133 Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
duke@435 134 const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
duke@435 135 // Extend the mapping: index i maps to Type *n.
duke@435 136 void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
duke@435 137 uint Size() const { return _max; }
duke@435 138 #ifndef PRODUCT
duke@435 139 void dump() const;
duke@435 140 #endif
duke@435 141 };
duke@435 142
duke@435 143
duke@435 144 //------------------------------PhaseRemoveUseless-----------------------------
duke@435 145 // Remove useless nodes from GVN hash-table, worklist, and graph
duke@435 146 class PhaseRemoveUseless : public Phase {
duke@435 147 protected:
duke@435 148 Unique_Node_List _useful; // Nodes reachable from root
duke@435 149 // list is allocated from current resource area
duke@435 150 public:
zmajo@8193 151 PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless);
duke@435 152
duke@435 153 Unique_Node_List *get_useful() { return &_useful; }
duke@435 154 };
duke@435 155
zmajo@8193 156 //------------------------------PhaseRenumber----------------------------------
zmajo@8193 157 // Phase that first performs a PhaseRemoveUseless, then it renumbers compiler
zmajo@8193 158 // structures accordingly.
zmajo@8193 159 class PhaseRenumberLive : public PhaseRemoveUseless {
zmajo@8193 160 public:
zmajo@8193 161 PhaseRenumberLive(PhaseGVN* gvn,
zmajo@8193 162 Unique_Node_List* worklist, Unique_Node_List* new_worklist,
zmajo@8193 163 PhaseNumber phase_num = Remove_Useless_And_Renumber_Live);
zmajo@8193 164 };
zmajo@8193 165
duke@435 166
duke@435 167 //------------------------------PhaseTransform---------------------------------
duke@435 168 // Phases that analyze, then transform. Constructing the Phase object does any
duke@435 169 // global or slow analysis. The results are cached later for a fast
duke@435 170 // transformation pass. When the Phase object is deleted the cached analysis
duke@435 171 // results are deleted.
duke@435 172 class PhaseTransform : public Phase {
duke@435 173 protected:
duke@435 174 Arena* _arena;
zmajo@8193 175 Node_List _nodes; // Map old node indices to new nodes.
duke@435 176 Type_Array _types; // Map old node indices to Types.
duke@435 177
duke@435 178 // ConNode caches:
duke@435 179 enum { _icon_min = -1 * HeapWordSize,
duke@435 180 _icon_max = 16 * HeapWordSize,
duke@435 181 _lcon_min = _icon_min,
duke@435 182 _lcon_max = _icon_max,
duke@435 183 _zcon_max = (uint)T_CONFLICT
duke@435 184 };
duke@435 185 ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes
duke@435 186 ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes
duke@435 187 ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes
duke@435 188 void init_con_caches();
duke@435 189
duke@435 190 // Support both int and long caches because either might be an intptr_t,
duke@435 191 // so they show up frequently in address computations.
duke@435 192
duke@435 193 public:
duke@435 194 PhaseTransform( PhaseNumber pnum );
duke@435 195 PhaseTransform( Arena *arena, PhaseNumber pnum );
duke@435 196 PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
duke@435 197
duke@435 198 Arena* arena() { return _arena; }
duke@435 199 Type_Array& types() { return _types; }
zmajo@8193 200 void replace_types(Type_Array new_types) {
zmajo@8193 201 _types = new_types;
zmajo@8193 202 }
duke@435 203 // _nodes is used in varying ways by subclasses, which define local accessors
zmajo@8193 204 uint nodes_size() {
zmajo@8193 205 return _nodes.size();
zmajo@8193 206 }
duke@435 207
duke@435 208 public:
duke@435 209 // Get a previously recorded type for the node n.
duke@435 210 // This type must already have been recorded.
duke@435 211 // If you want the type of a very new (untransformed) node,
duke@435 212 // you must use type_or_null, and test the result for NULL.
duke@435 213 const Type* type(const Node* n) const {
twisti@3969 214 assert(n != NULL, "must not be null");
duke@435 215 const Type* t = _types.fast_lookup(n->_idx);
duke@435 216 assert(t != NULL, "must set before get");
duke@435 217 return t;
duke@435 218 }
duke@435 219 // Get a previously recorded type for the node n,
duke@435 220 // or else return NULL if there is none.
duke@435 221 const Type* type_or_null(const Node* n) const {
duke@435 222 return _types.fast_lookup(n->_idx);
duke@435 223 }
duke@435 224 // Record a type for a node.
duke@435 225 void set_type(const Node* n, const Type *t) {
duke@435 226 assert(t != NULL, "type must not be null");
duke@435 227 _types.map(n->_idx, t);
duke@435 228 }
duke@435 229 // Record an initial type for a node, the node's bottom type.
duke@435 230 void set_type_bottom(const Node* n) {
duke@435 231 // Use this for initialization when bottom_type() (or better) is not handy.
duke@435 232 // Usually the initialization shoudl be to n->Value(this) instead,
duke@435 233 // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
duke@435 234 assert(_types[n->_idx] == NULL, "must set the initial type just once");
duke@435 235 _types.map(n->_idx, n->bottom_type());
duke@435 236 }
duke@435 237 // Make sure the types array is big enough to record a size for the node n.
duke@435 238 // (In product builds, we never want to do range checks on the types array!)
duke@435 239 void ensure_type_or_null(const Node* n) {
duke@435 240 if (n->_idx >= _types.Size())
duke@435 241 _types.map(n->_idx, NULL); // Grow the types array as needed.
duke@435 242 }
duke@435 243
duke@435 244 // Utility functions:
duke@435 245 const TypeInt* find_int_type( Node* n);
duke@435 246 const TypeLong* find_long_type(Node* n);
duke@435 247 jint find_int_con( Node* n, jint value_if_unknown) {
duke@435 248 const TypeInt* t = find_int_type(n);
duke@435 249 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 250 }
duke@435 251 jlong find_long_con(Node* n, jlong value_if_unknown) {
duke@435 252 const TypeLong* t = find_long_type(n);
duke@435 253 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
duke@435 254 }
duke@435 255
duke@435 256 // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
duke@435 257 // Same as transform(ConNode::make(t)).
duke@435 258 ConNode* makecon(const Type* t);
duke@435 259 virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues
duke@435 260 { ShouldNotCallThis(); return NULL; }
duke@435 261
duke@435 262 // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l).
duke@435 263 ConINode* intcon(jint i);
duke@435 264 ConLNode* longcon(jlong l);
duke@435 265
duke@435 266 // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)).
duke@435 267 ConNode* zerocon(BasicType bt);
duke@435 268
duke@435 269 // Return a node which computes the same function as this node, but
duke@435 270 // in a faster or cheaper fashion.
duke@435 271 virtual Node *transform( Node *n ) = 0;
duke@435 272
duke@435 273 // Return whether two Nodes are equivalent.
duke@435 274 // Must not be recursive, since the recursive version is built from this.
duke@435 275 // For pessimistic optimizations this is simply pointer equivalence.
duke@435 276 bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
duke@435 277
duke@435 278 // For pessimistic passes, the return type must monotonically narrow.
duke@435 279 // For optimistic passes, the return type must monotonically widen.
duke@435 280 // It is possible to get into a "death march" in either type of pass,
duke@435 281 // where the types are continually moving but it will take 2**31 or
duke@435 282 // more steps to converge. This doesn't happen on most normal loops.
duke@435 283 //
duke@435 284 // Here is an example of a deadly loop for an optimistic pass, along
duke@435 285 // with a partial trace of inferred types:
duke@435 286 // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
duke@435 287 // 0 1 join([0..max], 1)
duke@435 288 // [0..1] [1..2] join([0..max], [1..2])
duke@435 289 // [0..2] [1..3] join([0..max], [1..3])
duke@435 290 // ... ... ...
duke@435 291 // [0..max] [min]u[1..max] join([0..max], [min..max])
duke@435 292 // [0..max] ==> fixpoint
duke@435 293 // We would have proven, the hard way, that the iteration space is all
duke@435 294 // non-negative ints, with the loop terminating due to 32-bit overflow.
duke@435 295 //
duke@435 296 // Here is the corresponding example for a pessimistic pass:
duke@435 297 // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
duke@435 298 // int int join([0..max], int)
duke@435 299 // [0..max] [-1..max-1] join([0..max], [-1..max-1])
duke@435 300 // [0..max-1] [-1..max-2] join([0..max], [-1..max-2])
duke@435 301 // ... ... ...
duke@435 302 // [0..1] [-1..0] join([0..max], [-1..0])
duke@435 303 // 0 -1 join([0..max], -1)
duke@435 304 // 0 == fixpoint
duke@435 305 // We would have proven, the hard way, that the iteration space is {0}.
duke@435 306 // (Usually, other optimizations will make the "if (x >= 0)" fold up
duke@435 307 // before we get into trouble. But not always.)
duke@435 308 //
duke@435 309 // It's a pleasant thing to observe that the pessimistic pass
duke@435 310 // will make short work of the optimistic pass's deadly loop,
duke@435 311 // and vice versa. That is a good example of the complementary
duke@435 312 // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
duke@435 313 //
duke@435 314 // In any case, only widen or narrow a few times before going to the
duke@435 315 // correct flavor of top or bottom.
duke@435 316 //
duke@435 317 // This call only needs to be made once as the data flows around any
duke@435 318 // given cycle. We do it at Phis, and nowhere else.
duke@435 319 // The types presented are the new type of a phi (computed by PhiNode::Value)
duke@435 320 // and the previously computed type, last time the phi was visited.
duke@435 321 //
duke@435 322 // The third argument is upper limit for the saturated value,
duke@435 323 // if the phase wishes to widen the new_type.
duke@435 324 // If the phase is narrowing, the old type provides a lower limit.
duke@435 325 // Caller guarantees that old_type and new_type are no higher than limit_type.
duke@435 326 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 327 const Type* limit_type) const
duke@435 328 { ShouldNotCallThis(); return NULL; }
duke@435 329
duke@435 330 #ifndef PRODUCT
duke@435 331 void dump_old2new_map() const;
duke@435 332 void dump_new( uint new_lidx ) const;
duke@435 333 void dump_types() const;
duke@435 334 void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
duke@435 335 void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
duke@435 336
duke@435 337 uint _count_progress; // For profiling, count transforms that make progress
jcoomes@1844 338 void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
duke@435 339 void clear_progress() { _count_progress = 0; }
duke@435 340 uint made_progress() const { return _count_progress; }
duke@435 341
duke@435 342 uint _count_transforms; // For profiling, count transforms performed
duke@435 343 void set_transforms() { ++_count_transforms; }
duke@435 344 void clear_transforms() { _count_transforms = 0; }
duke@435 345 uint made_transforms() const{ return _count_transforms; }
duke@435 346
duke@435 347 bool _allow_progress; // progress not allowed during verification pass
duke@435 348 void set_allow_progress(bool allow) { _allow_progress = allow; }
duke@435 349 bool allow_progress() { return _allow_progress; }
duke@435 350 #endif
duke@435 351 };
duke@435 352
duke@435 353 //------------------------------PhaseValues------------------------------------
duke@435 354 // Phase infrastructure to support values
duke@435 355 class PhaseValues : public PhaseTransform {
duke@435 356 protected:
duke@435 357 NodeHash _table; // Hash table for value-numbering
duke@435 358
duke@435 359 public:
duke@435 360 PhaseValues( Arena *arena, uint est_max_size );
duke@435 361 PhaseValues( PhaseValues *pt );
duke@435 362 PhaseValues( PhaseValues *ptv, const char *dummy );
duke@435 363 NOT_PRODUCT( ~PhaseValues(); )
duke@435 364 virtual PhaseIterGVN *is_IterGVN() { return 0; }
duke@435 365
duke@435 366 // Some Ideal and other transforms delete --> modify --> insert values
duke@435 367 bool hash_delete(Node *n) { return _table.hash_delete(n); }
duke@435 368 void hash_insert(Node *n) { _table.hash_insert(n); }
duke@435 369 Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
duke@435 370 Node *hash_find(const Node *n) { return _table.hash_find(n); }
duke@435 371
duke@435 372 // Used after parsing to eliminate values that are no longer in program
never@1515 373 void remove_useless_nodes(VectorSet &useful) {
never@1515 374 _table.remove_useless_nodes(useful);
never@1515 375 // this may invalidate cached cons so reset the cache
never@1515 376 init_con_caches();
never@1515 377 }
duke@435 378
duke@435 379 virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform
duke@435 380
duke@435 381 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 382 const Type* limit_type) const
duke@435 383 { return new_type; }
duke@435 384
duke@435 385 #ifndef PRODUCT
duke@435 386 uint _count_new_values; // For profiling, count new values produced
duke@435 387 void inc_new_values() { ++_count_new_values; }
duke@435 388 void clear_new_values() { _count_new_values = 0; }
duke@435 389 uint made_new_values() const { return _count_new_values; }
duke@435 390 #endif
duke@435 391 };
duke@435 392
duke@435 393
duke@435 394 //------------------------------PhaseGVN---------------------------------------
duke@435 395 // Phase for performing local, pessimistic GVN-style optimizations.
duke@435 396 class PhaseGVN : public PhaseValues {
duke@435 397 public:
duke@435 398 PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
duke@435 399 PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
duke@435 400 PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
duke@435 401
duke@435 402 // Return a node which computes the same function as this node, but
duke@435 403 // in a faster or cheaper fashion.
duke@435 404 Node *transform( Node *n );
duke@435 405 Node *transform_no_reclaim( Node *n );
duke@435 406
roland@4409 407 void replace_with(PhaseGVN* gvn) {
roland@4409 408 _table.replace_with(&gvn->_table);
roland@4409 409 _types = gvn->_types;
roland@4409 410 }
roland@4409 411
duke@435 412 // Check for a simple dead loop when a data node references itself.
duke@435 413 DEBUG_ONLY(void dead_loop_check(Node *n);)
duke@435 414 };
duke@435 415
duke@435 416 //------------------------------PhaseIterGVN-----------------------------------
duke@435 417 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
duke@435 418 // and ideal transformations on the graph.
duke@435 419 class PhaseIterGVN : public PhaseGVN {
coleenp@548 420 private:
coleenp@548 421 bool _delay_transform; // When true simply register the node when calling transform
coleenp@548 422 // instead of actually optimizing it
coleenp@548 423
duke@435 424 // Idealize old Node 'n' with respect to its inputs and its value
duke@435 425 virtual Node *transform_old( Node *a_node );
kvn@1976 426
kvn@1976 427 // Subsume users of node 'old' into node 'nn'
kvn@1976 428 void subsume_node( Node *old, Node *nn );
kvn@1976 429
dlong@3947 430 Node_Stack _stack; // Stack used to avoid recursion
dlong@3947 431
duke@435 432 protected:
duke@435 433
duke@435 434 // Idealize new Node 'n' with respect to its inputs and its value
duke@435 435 virtual Node *transform( Node *a_node );
duke@435 436
duke@435 437 // Warm up hash table, type table and initial worklist
duke@435 438 void init_worklist( Node *a_root );
duke@435 439
duke@435 440 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 441 const Type* limit_type) const;
duke@435 442 // Usually returns new_type. Returns old_type if new_type is only a slight
duke@435 443 // improvement, such that it would take many (>>10) steps to reach 2**32.
duke@435 444
duke@435 445 public:
duke@435 446 PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
duke@435 447 PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
duke@435 448 PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
duke@435 449
duke@435 450 virtual PhaseIterGVN *is_IterGVN() { return this; }
duke@435 451
duke@435 452 Unique_Node_List _worklist; // Iterative worklist
duke@435 453
duke@435 454 // Given def-use info and an initial worklist, apply Node::Ideal,
duke@435 455 // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
duke@435 456 // and dominator info to a fixed point.
duke@435 457 void optimize();
duke@435 458
duke@435 459 // Register a new node with the iter GVN pass without transforming it.
duke@435 460 // Used when we need to restructure a Region/Phi area and all the Regions
duke@435 461 // and Phis need to complete this one big transform before any other
duke@435 462 // transforms can be triggered on the region.
duke@435 463 // Optional 'orig' is an earlier version of this node.
duke@435 464 // It is significant only for debugging and profiling.
duke@435 465 Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
duke@435 466
dlong@3947 467 // Kill a globally dead Node. All uses are also globally dead and are
dlong@3947 468 // aggressively trimmed.
duke@435 469 void remove_globally_dead_node( Node *dead );
duke@435 470
duke@435 471 // Kill all inputs to a dead node, recursively making more dead nodes.
duke@435 472 // The Node must be dead locally, i.e., have no uses.
duke@435 473 void remove_dead_node( Node *dead ) {
duke@435 474 assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
duke@435 475 remove_globally_dead_node(dead);
duke@435 476 }
duke@435 477
duke@435 478 // Add users of 'n' to worklist
duke@435 479 void add_users_to_worklist0( Node *n );
duke@435 480 void add_users_to_worklist ( Node *n );
duke@435 481
kvn@508 482 // Replace old node with new one.
kvn@508 483 void replace_node( Node *old, Node *nn ) {
kvn@508 484 add_users_to_worklist(old);
kvn@1976 485 hash_delete(old); // Yank from hash before hacking edges
kvn@508 486 subsume_node(old, nn);
kvn@508 487 }
kvn@508 488
kvn@3847 489 // Delayed node rehash: remove a node from the hash table and rehash it during
kvn@3847 490 // next optimizing pass
kvn@3847 491 void rehash_node_delayed(Node* n) {
kvn@3847 492 hash_delete(n);
kvn@3847 493 _worklist.push(n);
kvn@3847 494 }
kvn@3847 495
kvn@3847 496 // Replace ith edge of "n" with "in"
kvn@3847 497 void replace_input_of(Node* n, int i, Node* in) {
kvn@3847 498 rehash_node_delayed(n);
kvn@3847 499 n->set_req(i, in);
kvn@3847 500 }
kvn@3847 501
kvn@3847 502 // Delete ith edge of "n"
kvn@3847 503 void delete_input_of(Node* n, int i) {
kvn@3847 504 rehash_node_delayed(n);
kvn@3847 505 n->del_req(i);
kvn@3847 506 }
kvn@3847 507
kvn@1286 508 bool delay_transform() const { return _delay_transform; }
kvn@1286 509
coleenp@548 510 void set_delay_transform(bool delay) {
coleenp@548 511 _delay_transform = delay;
coleenp@548 512 }
coleenp@548 513
kvn@2727 514 // Clone loop predicates. Defined in loopTransform.cpp.
kvn@2877 515 Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
kvn@2727 516 // Create a new if below new_entry for the predicate to be cloned
kvn@2727 517 ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
kvn@2727 518 Deoptimization::DeoptReason reason);
kvn@2727 519
roland@5991 520 void remove_speculative_types();
roland@6313 521 void check_no_speculative_types() {
roland@6313 522 _table.check_no_speculative_types();
roland@6313 523 }
roland@5991 524
duke@435 525 #ifndef PRODUCT
duke@435 526 protected:
duke@435 527 // Sub-quadratic implementation of VerifyIterativeGVN.
vlivanov@4157 528 julong _verify_counter;
vlivanov@4157 529 julong _verify_full_passes;
duke@435 530 enum { _verify_window_size = 30 };
duke@435 531 Node* _verify_window[_verify_window_size];
duke@435 532 void verify_step(Node* n);
duke@435 533 #endif
duke@435 534 };
duke@435 535
duke@435 536 //------------------------------PhaseCCP---------------------------------------
duke@435 537 // Phase for performing global Conditional Constant Propagation.
duke@435 538 // Should be replaced with combined CCP & GVN someday.
duke@435 539 class PhaseCCP : public PhaseIterGVN {
duke@435 540 // Non-recursive. Use analysis to transform single Node.
duke@435 541 virtual Node *transform_once( Node *n );
duke@435 542
duke@435 543 public:
duke@435 544 PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
duke@435 545 NOT_PRODUCT( ~PhaseCCP(); )
duke@435 546
duke@435 547 // Worklist algorithm identifies constants
duke@435 548 void analyze();
duke@435 549 // Recursive traversal of program. Used analysis to modify program.
duke@435 550 virtual Node *transform( Node *n );
duke@435 551 // Do any transformation after analysis
duke@435 552 void do_transform();
duke@435 553
duke@435 554 virtual const Type* saturate(const Type* new_type, const Type* old_type,
duke@435 555 const Type* limit_type) const;
duke@435 556 // Returns new_type->widen(old_type), which increments the widen bits until
duke@435 557 // giving up with TypeInt::INT or TypeLong::LONG.
duke@435 558 // Result is clipped to limit_type if necessary.
duke@435 559
duke@435 560 #ifndef PRODUCT
duke@435 561 static uint _total_invokes; // For profiling, count invocations
duke@435 562 void inc_invokes() { ++PhaseCCP::_total_invokes; }
duke@435 563
duke@435 564 static uint _total_constants; // For profiling, count constants found
duke@435 565 uint _count_constants;
duke@435 566 void clear_constants() { _count_constants = 0; }
duke@435 567 void inc_constants() { ++_count_constants; }
duke@435 568 uint count_constants() const { return _count_constants; }
duke@435 569
duke@435 570 static void print_statistics();
duke@435 571 #endif
duke@435 572 };
duke@435 573
duke@435 574
duke@435 575 //------------------------------PhasePeephole----------------------------------
duke@435 576 // Phase for performing peephole optimizations on register allocated basic blocks.
duke@435 577 class PhasePeephole : public PhaseTransform {
duke@435 578 PhaseRegAlloc *_regalloc;
duke@435 579 PhaseCFG &_cfg;
duke@435 580 // Recursive traversal of program. Pure function is unused in this phase
duke@435 581 virtual Node *transform( Node *n );
duke@435 582
duke@435 583 public:
duke@435 584 PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
duke@435 585 NOT_PRODUCT( ~PhasePeephole(); )
duke@435 586
duke@435 587 // Do any transformation after analysis
duke@435 588 void do_transform();
duke@435 589
duke@435 590 #ifndef PRODUCT
duke@435 591 static uint _total_peepholes; // For profiling, count peephole rules applied
duke@435 592 uint _count_peepholes;
duke@435 593 void clear_peepholes() { _count_peepholes = 0; }
duke@435 594 void inc_peepholes() { ++_count_peepholes; }
duke@435 595 uint count_peepholes() const { return _count_peepholes; }
duke@435 596
duke@435 597 static void print_statistics();
duke@435 598 #endif
duke@435 599 };
stefank@2314 600
stefank@2314 601 #endif // SHARE_VM_OPTO_PHASEX_HPP

mercurial