src/share/vm/memory/blockOffsetTable.hpp

Tue, 13 Apr 2010 13:52:10 -0700

author
jmasa
date
Tue, 13 Apr 2010 13:52:10 -0700
changeset 1822
0bfd3fb24150
parent 1279
bd02caa94611
child 1873
3bfae429e2cf
permissions
-rw-r--r--

6858496: Clear all SoftReferences before an out-of-memory due to GC overhead limit.
Summary: Ensure a full GC that clears SoftReferences before throwing an out-of-memory
Reviewed-by: ysr, jcoomes

duke@435 1 /*
xdono@1279 2 * Copyright 2000-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // The CollectedHeap type requires subtypes to implement a method
duke@435 26 // "block_start". For some subtypes, notably generational
duke@435 27 // systems using card-table-based write barriers, the efficiency of this
duke@435 28 // operation may be important. Implementations of the "BlockOffsetArray"
duke@435 29 // class may be useful in providing such efficient implementations.
duke@435 30 //
duke@435 31 // BlockOffsetTable (abstract)
duke@435 32 // - BlockOffsetArray (abstract)
duke@435 33 // - BlockOffsetArrayNonContigSpace
duke@435 34 // - BlockOffsetArrayContigSpace
duke@435 35 //
duke@435 36
duke@435 37 class ContiguousSpace;
duke@435 38 class SerializeOopClosure;
duke@435 39
duke@435 40 //////////////////////////////////////////////////////////////////////////
duke@435 41 // The BlockOffsetTable "interface"
duke@435 42 //////////////////////////////////////////////////////////////////////////
duke@435 43 class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
duke@435 44 friend class VMStructs;
duke@435 45 protected:
duke@435 46 // These members describe the region covered by the table.
duke@435 47
duke@435 48 // The space this table is covering.
duke@435 49 HeapWord* _bottom; // == reserved.start
duke@435 50 HeapWord* _end; // End of currently allocated region.
duke@435 51
duke@435 52 public:
duke@435 53 // Initialize the table to cover the given space.
duke@435 54 // The contents of the initial table are undefined.
duke@435 55 BlockOffsetTable(HeapWord* bottom, HeapWord* end):
duke@435 56 _bottom(bottom), _end(end) {
duke@435 57 assert(_bottom <= _end, "arguments out of order");
duke@435 58 }
duke@435 59
duke@435 60 // Note that the committed size of the covered space may have changed,
duke@435 61 // so the table size might also wish to change.
duke@435 62 virtual void resize(size_t new_word_size) = 0;
duke@435 63
duke@435 64 virtual void set_bottom(HeapWord* new_bottom) {
duke@435 65 assert(new_bottom <= _end, "new_bottom > _end");
duke@435 66 _bottom = new_bottom;
duke@435 67 resize(pointer_delta(_end, _bottom));
duke@435 68 }
duke@435 69
duke@435 70 // Requires "addr" to be contained by a block, and returns the address of
duke@435 71 // the start of that block.
duke@435 72 virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
duke@435 73
duke@435 74 // Returns the address of the start of the block containing "addr", or
duke@435 75 // else "null" if it is covered by no block.
duke@435 76 HeapWord* block_start(const void* addr) const;
duke@435 77 };
duke@435 78
duke@435 79 //////////////////////////////////////////////////////////////////////////
duke@435 80 // One implementation of "BlockOffsetTable," the BlockOffsetArray,
duke@435 81 // divides the covered region into "N"-word subregions (where
duke@435 82 // "N" = 2^"LogN". An array with an entry for each such subregion
duke@435 83 // indicates how far back one must go to find the start of the
duke@435 84 // chunk that includes the first word of the subregion.
duke@435 85 //
duke@435 86 // Each BlockOffsetArray is owned by a Space. However, the actual array
duke@435 87 // may be shared by several BlockOffsetArrays; this is useful
duke@435 88 // when a single resizable area (such as a generation) is divided up into
duke@435 89 // several spaces in which contiguous allocation takes place. (Consider,
duke@435 90 // for example, the garbage-first generation.)
duke@435 91
duke@435 92 // Here is the shared array type.
duke@435 93 //////////////////////////////////////////////////////////////////////////
duke@435 94 // BlockOffsetSharedArray
duke@435 95 //////////////////////////////////////////////////////////////////////////
duke@435 96 class BlockOffsetSharedArray: public CHeapObj {
duke@435 97 friend class BlockOffsetArray;
duke@435 98 friend class BlockOffsetArrayNonContigSpace;
duke@435 99 friend class BlockOffsetArrayContigSpace;
duke@435 100 friend class VMStructs;
duke@435 101
duke@435 102 private:
duke@435 103 enum SomePrivateConstants {
duke@435 104 LogN = 9,
duke@435 105 LogN_words = LogN - LogHeapWordSize,
duke@435 106 N_bytes = 1 << LogN,
duke@435 107 N_words = 1 << LogN_words
duke@435 108 };
duke@435 109
duke@435 110 // The reserved region covered by the shared array.
duke@435 111 MemRegion _reserved;
duke@435 112
duke@435 113 // End of the current committed region.
duke@435 114 HeapWord* _end;
duke@435 115
duke@435 116 // Array for keeping offsets for retrieving object start fast given an
duke@435 117 // address.
duke@435 118 VirtualSpace _vs;
duke@435 119 u_char* _offset_array; // byte array keeping backwards offsets
duke@435 120
duke@435 121 protected:
duke@435 122 // Bounds checking accessors:
duke@435 123 // For performance these have to devolve to array accesses in product builds.
duke@435 124 u_char offset_array(size_t index) const {
duke@435 125 assert(index < _vs.committed_size(), "index out of range");
duke@435 126 return _offset_array[index];
duke@435 127 }
duke@435 128 void set_offset_array(size_t index, u_char offset) {
duke@435 129 assert(index < _vs.committed_size(), "index out of range");
duke@435 130 _offset_array[index] = offset;
duke@435 131 }
duke@435 132 void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
duke@435 133 assert(index < _vs.committed_size(), "index out of range");
duke@435 134 assert(high >= low, "addresses out of order");
duke@435 135 assert(pointer_delta(high, low) <= N_words, "offset too large");
duke@435 136 _offset_array[index] = (u_char)pointer_delta(high, low);
duke@435 137 }
duke@435 138 void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
duke@435 139 assert(index_for(right - 1) < _vs.committed_size(),
duke@435 140 "right address out of range");
duke@435 141 assert(left < right, "Heap addresses out of order");
duke@435 142 size_t num_cards = pointer_delta(right, left) >> LogN_words;
duke@435 143 memset(&_offset_array[index_for(left)], offset, num_cards);
duke@435 144 }
duke@435 145
duke@435 146 void set_offset_array(size_t left, size_t right, u_char offset) {
duke@435 147 assert(right < _vs.committed_size(), "right address out of range");
duke@435 148 assert(left <= right, "indexes out of order");
duke@435 149 size_t num_cards = right - left + 1;
duke@435 150 memset(&_offset_array[left], offset, num_cards);
duke@435 151 }
duke@435 152
duke@435 153 void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
duke@435 154 assert(index < _vs.committed_size(), "index out of range");
duke@435 155 assert(high >= low, "addresses out of order");
duke@435 156 assert(pointer_delta(high, low) <= N_words, "offset too large");
duke@435 157 assert(_offset_array[index] == pointer_delta(high, low),
duke@435 158 "Wrong offset");
duke@435 159 }
duke@435 160
duke@435 161 bool is_card_boundary(HeapWord* p) const;
duke@435 162
duke@435 163 // Return the number of slots needed for an offset array
duke@435 164 // that covers mem_region_words words.
duke@435 165 // We always add an extra slot because if an object
duke@435 166 // ends on a card boundary we put a 0 in the next
duke@435 167 // offset array slot, so we want that slot always
duke@435 168 // to be reserved.
duke@435 169
duke@435 170 size_t compute_size(size_t mem_region_words) {
duke@435 171 size_t number_of_slots = (mem_region_words / N_words) + 1;
duke@435 172 return ReservedSpace::allocation_align_size_up(number_of_slots);
duke@435 173 }
duke@435 174
duke@435 175 public:
duke@435 176 // Initialize the table to cover from "base" to (at least)
duke@435 177 // "base + init_word_size". In the future, the table may be expanded
duke@435 178 // (see "resize" below) up to the size of "_reserved" (which must be at
duke@435 179 // least "init_word_size".) The contents of the initial table are
duke@435 180 // undefined; it is the responsibility of the constituent
duke@435 181 // BlockOffsetTable(s) to initialize cards.
duke@435 182 BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
duke@435 183
duke@435 184 // Notes a change in the committed size of the region covered by the
duke@435 185 // table. The "new_word_size" may not be larger than the size of the
duke@435 186 // reserved region this table covers.
duke@435 187 void resize(size_t new_word_size);
duke@435 188
duke@435 189 void set_bottom(HeapWord* new_bottom);
duke@435 190
duke@435 191 // Updates all the BlockOffsetArray's sharing this shared array to
duke@435 192 // reflect the current "top"'s of their spaces.
duke@435 193 void update_offset_arrays(); // Not yet implemented!
duke@435 194
duke@435 195 // Return the appropriate index into "_offset_array" for "p".
duke@435 196 size_t index_for(const void* p) const;
duke@435 197
duke@435 198 // Return the address indicating the start of the region corresponding to
duke@435 199 // "index" in "_offset_array".
duke@435 200 HeapWord* address_for_index(size_t index) const;
duke@435 201
jmasa@736 202 // Return the address "p" incremented by the size of
jmasa@736 203 // a region. This method does not align the address
jmasa@736 204 // returned to the start of a region. It is a simple
jmasa@736 205 // primitive.
jmasa@736 206 HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }
jmasa@736 207
duke@435 208 // Shared space support
duke@435 209 void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
duke@435 210 };
duke@435 211
duke@435 212 //////////////////////////////////////////////////////////////////////////
duke@435 213 // The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
duke@435 214 //////////////////////////////////////////////////////////////////////////
duke@435 215 class BlockOffsetArray: public BlockOffsetTable {
duke@435 216 friend class VMStructs;
ysr@777 217 friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
duke@435 218 protected:
duke@435 219 // The following enums are used by do_block_internal() below
duke@435 220 enum Action {
duke@435 221 Action_single, // BOT records a single block (see single_block())
duke@435 222 Action_mark, // BOT marks the start of a block (see mark_block())
duke@435 223 Action_check // Check that BOT records block correctly
duke@435 224 // (see verify_single_block()).
duke@435 225 };
duke@435 226
duke@435 227 enum SomePrivateConstants {
duke@435 228 N_words = BlockOffsetSharedArray::N_words,
duke@435 229 LogN = BlockOffsetSharedArray::LogN,
duke@435 230 // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
duke@435 231 // All entries are less than "N_words + N_powers".
duke@435 232 LogBase = 4,
duke@435 233 Base = (1 << LogBase),
duke@435 234 N_powers = 14
duke@435 235 };
duke@435 236
duke@435 237 static size_t power_to_cards_back(uint i) {
kvn@1080 238 return (size_t)(1 << (LogBase * i));
duke@435 239 }
duke@435 240 static size_t power_to_words_back(uint i) {
duke@435 241 return power_to_cards_back(i) * N_words;
duke@435 242 }
duke@435 243 static size_t entry_to_cards_back(u_char entry) {
duke@435 244 assert(entry >= N_words, "Precondition");
duke@435 245 return power_to_cards_back(entry - N_words);
duke@435 246 }
duke@435 247 static size_t entry_to_words_back(u_char entry) {
duke@435 248 assert(entry >= N_words, "Precondition");
duke@435 249 return power_to_words_back(entry - N_words);
duke@435 250 }
duke@435 251
duke@435 252 // The shared array, which is shared with other BlockOffsetArray's
duke@435 253 // corresponding to different spaces within a generation or span of
duke@435 254 // memory.
duke@435 255 BlockOffsetSharedArray* _array;
duke@435 256
duke@435 257 // The space that owns this subregion.
duke@435 258 Space* _sp;
duke@435 259
duke@435 260 // If true, array entries are initialized to 0; otherwise, they are
duke@435 261 // initialized to point backwards to the beginning of the covered region.
duke@435 262 bool _init_to_zero;
duke@435 263
duke@435 264 // Sets the entries
duke@435 265 // corresponding to the cards starting at "start" and ending at "end"
duke@435 266 // to point back to the card before "start": the interval [start, end)
duke@435 267 // is right-open.
duke@435 268 void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
duke@435 269 // Same as above, except that the args here are a card _index_ interval
duke@435 270 // that is closed: [start_index, end_index]
duke@435 271 void set_remainder_to_point_to_start_incl(size_t start, size_t end);
duke@435 272
duke@435 273 // A helper function for BOT adjustment/verification work
duke@435 274 void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
duke@435 275
duke@435 276 public:
duke@435 277 // The space may not have its bottom and top set yet, which is why the
duke@435 278 // region is passed as a parameter. If "init_to_zero" is true, the
duke@435 279 // elements of the array are initialized to zero. Otherwise, they are
duke@435 280 // initialized to point backwards to the beginning.
duke@435 281 BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
duke@435 282 bool init_to_zero);
duke@435 283
duke@435 284 // Note: this ought to be part of the constructor, but that would require
duke@435 285 // "this" to be passed as a parameter to a member constructor for
duke@435 286 // the containing concrete subtype of Space.
duke@435 287 // This would be legal C++, but MS VC++ doesn't allow it.
duke@435 288 void set_space(Space* sp) { _sp = sp; }
duke@435 289
duke@435 290 // Resets the covered region to the given "mr".
duke@435 291 void set_region(MemRegion mr) {
duke@435 292 _bottom = mr.start();
duke@435 293 _end = mr.end();
duke@435 294 }
duke@435 295
duke@435 296 // Note that the committed size of the covered space may have changed,
duke@435 297 // so the table size might also wish to change.
duke@435 298 virtual void resize(size_t new_word_size) {
duke@435 299 HeapWord* new_end = _bottom + new_word_size;
duke@435 300 if (_end < new_end && !init_to_zero()) {
duke@435 301 // verify that the old and new boundaries are also card boundaries
duke@435 302 assert(_array->is_card_boundary(_end),
duke@435 303 "_end not a card boundary");
duke@435 304 assert(_array->is_card_boundary(new_end),
duke@435 305 "new _end would not be a card boundary");
duke@435 306 // set all the newly added cards
duke@435 307 _array->set_offset_array(_end, new_end, N_words);
duke@435 308 }
duke@435 309 _end = new_end; // update _end
duke@435 310 }
duke@435 311
duke@435 312 // Adjust the BOT to show that it has a single block in the
duke@435 313 // range [blk_start, blk_start + size). All necessary BOT
duke@435 314 // cards are adjusted, but _unallocated_block isn't.
duke@435 315 void single_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 316 void single_block(HeapWord* blk, size_t size) {
duke@435 317 single_block(blk, blk + size);
duke@435 318 }
duke@435 319
duke@435 320 // When the alloc_block() call returns, the block offset table should
duke@435 321 // have enough information such that any subsequent block_start() call
duke@435 322 // with an argument equal to an address that is within the range
duke@435 323 // [blk_start, blk_end) would return the value blk_start, provided
duke@435 324 // there have been no calls in between that reset this information
duke@435 325 // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
duke@435 326 // for an appropriate range covering the said interval).
duke@435 327 // These methods expect to be called with [blk_start, blk_end)
duke@435 328 // representing a block of memory in the heap.
duke@435 329 virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 330 void alloc_block(HeapWord* blk, size_t size) {
duke@435 331 alloc_block(blk, blk + size);
duke@435 332 }
duke@435 333
duke@435 334 // If true, initialize array slots with no allocated blocks to zero.
duke@435 335 // Otherwise, make them point back to the front.
duke@435 336 bool init_to_zero() { return _init_to_zero; }
duke@435 337
duke@435 338 // Debugging
duke@435 339 // Return the index of the last entry in the "active" region.
duke@435 340 virtual size_t last_active_index() const = 0;
duke@435 341 // Verify the block offset table
duke@435 342 void verify() const;
duke@435 343 void check_all_cards(size_t left_card, size_t right_card) const;
duke@435 344 };
duke@435 345
duke@435 346 ////////////////////////////////////////////////////////////////////////////
duke@435 347 // A subtype of BlockOffsetArray that takes advantage of the fact
duke@435 348 // that its underlying space is a NonContiguousSpace, so that some
duke@435 349 // specialized interfaces can be made available for spaces that
duke@435 350 // manipulate the table.
duke@435 351 ////////////////////////////////////////////////////////////////////////////
duke@435 352 class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
duke@435 353 friend class VMStructs;
duke@435 354 private:
duke@435 355 // The portion [_unallocated_block, _sp.end()) of the space that
duke@435 356 // is a single block known not to contain any objects.
duke@435 357 // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
duke@435 358 HeapWord* _unallocated_block;
duke@435 359
duke@435 360 public:
duke@435 361 BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
duke@435 362 BlockOffsetArray(array, mr, false),
duke@435 363 _unallocated_block(_bottom) { }
duke@435 364
duke@435 365 // accessor
duke@435 366 HeapWord* unallocated_block() const {
duke@435 367 assert(BlockOffsetArrayUseUnallocatedBlock,
duke@435 368 "_unallocated_block is not being maintained");
duke@435 369 return _unallocated_block;
duke@435 370 }
duke@435 371
duke@435 372 void set_unallocated_block(HeapWord* block) {
duke@435 373 assert(BlockOffsetArrayUseUnallocatedBlock,
duke@435 374 "_unallocated_block is not being maintained");
duke@435 375 assert(block >= _bottom && block <= _end, "out of range");
duke@435 376 _unallocated_block = block;
duke@435 377 }
duke@435 378
duke@435 379 // These methods expect to be called with [blk_start, blk_end)
duke@435 380 // representing a block of memory in the heap.
duke@435 381 void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 382 void alloc_block(HeapWord* blk, size_t size) {
duke@435 383 alloc_block(blk, blk + size);
duke@435 384 }
duke@435 385
duke@435 386 // The following methods are useful and optimized for a
duke@435 387 // non-contiguous space.
duke@435 388
duke@435 389 // Given a block [blk_start, blk_start + full_blk_size), and
duke@435 390 // a left_blk_size < full_blk_size, adjust the BOT to show two
duke@435 391 // blocks [blk_start, blk_start + left_blk_size) and
duke@435 392 // [blk_start + left_blk_size, blk_start + full_blk_size).
duke@435 393 // It is assumed (and verified in the non-product VM) that the
duke@435 394 // BOT was correct for the original block.
duke@435 395 void split_block(HeapWord* blk_start, size_t full_blk_size,
duke@435 396 size_t left_blk_size);
duke@435 397
duke@435 398 // Adjust BOT to show that it has a block in the range
duke@435 399 // [blk_start, blk_start + size). Only the first card
duke@435 400 // of BOT is touched. It is assumed (and verified in the
duke@435 401 // non-product VM) that the remaining cards of the block
duke@435 402 // are correct.
duke@435 403 void mark_block(HeapWord* blk_start, HeapWord* blk_end);
duke@435 404 void mark_block(HeapWord* blk, size_t size) {
duke@435 405 mark_block(blk, blk + size);
duke@435 406 }
duke@435 407
duke@435 408 // Adjust _unallocated_block to indicate that a particular
duke@435 409 // block has been newly allocated or freed. It is assumed (and
duke@435 410 // verified in the non-product VM) that the BOT is correct for
duke@435 411 // the given block.
duke@435 412 void allocated(HeapWord* blk_start, HeapWord* blk_end) {
duke@435 413 // Verify that the BOT shows [blk, blk + blk_size) to be one block.
duke@435 414 verify_single_block(blk_start, blk_end);
duke@435 415 if (BlockOffsetArrayUseUnallocatedBlock) {
duke@435 416 _unallocated_block = MAX2(_unallocated_block, blk_end);
duke@435 417 }
duke@435 418 }
duke@435 419
duke@435 420 void allocated(HeapWord* blk, size_t size) {
duke@435 421 allocated(blk, blk + size);
duke@435 422 }
duke@435 423
duke@435 424 void freed(HeapWord* blk_start, HeapWord* blk_end);
duke@435 425 void freed(HeapWord* blk, size_t size) {
duke@435 426 freed(blk, blk + size);
duke@435 427 }
duke@435 428
duke@435 429 HeapWord* block_start_unsafe(const void* addr) const;
duke@435 430
duke@435 431 // Requires "addr" to be the start of a card and returns the
duke@435 432 // start of the block that contains the given address.
duke@435 433 HeapWord* block_start_careful(const void* addr) const;
duke@435 434
duke@435 435
duke@435 436 // Verification & debugging: ensure that the offset table reflects
duke@435 437 // the fact that the block [blk_start, blk_end) or [blk, blk + size)
duke@435 438 // is a single block of storage. NOTE: can't const this because of
duke@435 439 // call to non-const do_block_internal() below.
duke@435 440 void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
duke@435 441 PRODUCT_RETURN;
duke@435 442 void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
duke@435 443
duke@435 444 // Verify that the given block is before _unallocated_block
duke@435 445 void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
duke@435 446 const PRODUCT_RETURN;
duke@435 447 void verify_not_unallocated(HeapWord* blk, size_t size)
duke@435 448 const PRODUCT_RETURN;
duke@435 449
duke@435 450 // Debugging support
duke@435 451 virtual size_t last_active_index() const;
duke@435 452 };
duke@435 453
duke@435 454 ////////////////////////////////////////////////////////////////////////////
duke@435 455 // A subtype of BlockOffsetArray that takes advantage of the fact
duke@435 456 // that its underlying space is a ContiguousSpace, so that its "active"
duke@435 457 // region can be more efficiently tracked (than for a non-contiguous space).
duke@435 458 ////////////////////////////////////////////////////////////////////////////
duke@435 459 class BlockOffsetArrayContigSpace: public BlockOffsetArray {
duke@435 460 friend class VMStructs;
duke@435 461 private:
duke@435 462 // allocation boundary at which offset array must be updated
duke@435 463 HeapWord* _next_offset_threshold;
duke@435 464 size_t _next_offset_index; // index corresponding to that boundary
duke@435 465
duke@435 466 // Work function when allocation start crosses threshold.
duke@435 467 void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
duke@435 468
duke@435 469 public:
duke@435 470 BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
duke@435 471 BlockOffsetArray(array, mr, true) {
duke@435 472 _next_offset_threshold = NULL;
duke@435 473 _next_offset_index = 0;
duke@435 474 }
duke@435 475
duke@435 476 void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
duke@435 477
duke@435 478 // Initialize the threshold for an empty heap.
duke@435 479 HeapWord* initialize_threshold();
duke@435 480 // Zero out the entry for _bottom (offset will be zero)
duke@435 481 void zero_bottom_entry();
duke@435 482
duke@435 483 // Return the next threshold, the point at which the table should be
duke@435 484 // updated.
duke@435 485 HeapWord* threshold() const { return _next_offset_threshold; }
duke@435 486
duke@435 487 // In general, these methods expect to be called with
duke@435 488 // [blk_start, blk_end) representing a block of memory in the heap.
duke@435 489 // In this implementation, however, we are OK even if blk_start and/or
duke@435 490 // blk_end are NULL because NULL is represented as 0, and thus
duke@435 491 // never exceeds the "_next_offset_threshold".
duke@435 492 void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
duke@435 493 if (blk_end > _next_offset_threshold) {
duke@435 494 alloc_block_work(blk_start, blk_end);
duke@435 495 }
duke@435 496 }
duke@435 497 void alloc_block(HeapWord* blk, size_t size) {
duke@435 498 alloc_block(blk, blk + size);
duke@435 499 }
duke@435 500
duke@435 501 HeapWord* block_start_unsafe(const void* addr) const;
duke@435 502
duke@435 503 void serialize(SerializeOopClosure* soc);
duke@435 504
duke@435 505 // Debugging support
duke@435 506 virtual size_t last_active_index() const;
duke@435 507 };

mercurial