src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Thu, 24 May 2018 17:06:56 +0800

author
aoqi
date
Thu, 24 May 2018 17:06:56 +0800
changeset 8604
04d83ba48607
parent 8563
a3ede966ecfe
parent 6876
710a3c8b516e
child 9637
eef07cd490d4
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "c1/c1_Compilation.hpp"
aoqi@0 27 #include "c1/c1_LIRAssembler.hpp"
aoqi@0 28 #include "c1/c1_MacroAssembler.hpp"
aoqi@0 29 #include "c1/c1_Runtime1.hpp"
aoqi@0 30 #include "c1/c1_ValueStack.hpp"
aoqi@0 31 #include "ci/ciArrayKlass.hpp"
aoqi@0 32 #include "ci/ciInstance.hpp"
aoqi@0 33 #include "gc_interface/collectedHeap.hpp"
aoqi@0 34 #include "memory/barrierSet.hpp"
aoqi@0 35 #include "memory/cardTableModRefBS.hpp"
aoqi@0 36 #include "nativeInst_sparc.hpp"
aoqi@0 37 #include "oops/objArrayKlass.hpp"
aoqi@0 38 #include "runtime/sharedRuntime.hpp"
aoqi@0 39
aoqi@0 40 #define __ _masm->
aoqi@0 41
aoqi@0 42
aoqi@0 43 //------------------------------------------------------------
aoqi@0 44
aoqi@0 45
aoqi@0 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
aoqi@0 47 if (opr->is_constant()) {
aoqi@0 48 LIR_Const* constant = opr->as_constant_ptr();
aoqi@0 49 switch (constant->type()) {
aoqi@0 50 case T_INT: {
aoqi@0 51 jint value = constant->as_jint();
aoqi@0 52 return Assembler::is_simm13(value);
aoqi@0 53 }
aoqi@0 54
aoqi@0 55 default:
aoqi@0 56 return false;
aoqi@0 57 }
aoqi@0 58 }
aoqi@0 59 return false;
aoqi@0 60 }
aoqi@0 61
aoqi@0 62
aoqi@0 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
aoqi@0 64 switch (op->code()) {
aoqi@0 65 case lir_null_check:
aoqi@0 66 return true;
aoqi@0 67
aoqi@0 68
aoqi@0 69 case lir_add:
aoqi@0 70 case lir_ushr:
aoqi@0 71 case lir_shr:
aoqi@0 72 case lir_shl:
aoqi@0 73 // integer shifts and adds are always one instruction
aoqi@0 74 return op->result_opr()->is_single_cpu();
aoqi@0 75
aoqi@0 76
aoqi@0 77 case lir_move: {
aoqi@0 78 LIR_Op1* op1 = op->as_Op1();
aoqi@0 79 LIR_Opr src = op1->in_opr();
aoqi@0 80 LIR_Opr dst = op1->result_opr();
aoqi@0 81
aoqi@0 82 if (src == dst) {
aoqi@0 83 NEEDS_CLEANUP;
aoqi@0 84 // this works around a problem where moves with the same src and dst
aoqi@0 85 // end up in the delay slot and then the assembler swallows the mov
aoqi@0 86 // since it has no effect and then it complains because the delay slot
aoqi@0 87 // is empty. returning false stops the optimizer from putting this in
aoqi@0 88 // the delay slot
aoqi@0 89 return false;
aoqi@0 90 }
aoqi@0 91
aoqi@0 92 // don't put moves involving oops into the delay slot since the VerifyOops code
aoqi@0 93 // will make it much larger than a single instruction.
aoqi@0 94 if (VerifyOops) {
aoqi@0 95 return false;
aoqi@0 96 }
aoqi@0 97
aoqi@0 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
aoqi@0 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
aoqi@0 100 return false;
aoqi@0 101 }
aoqi@0 102
aoqi@0 103 if (UseCompressedOops) {
aoqi@0 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
aoqi@0 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
aoqi@0 106 }
aoqi@0 107
aoqi@0 108 if (UseCompressedClassPointers) {
aoqi@0 109 if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
aoqi@0 110 src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
aoqi@0 111 }
aoqi@0 112
aoqi@0 113 if (dst->is_register()) {
aoqi@0 114 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
aoqi@0 115 return !PatchALot;
aoqi@0 116 } else if (src->is_single_stack()) {
aoqi@0 117 return true;
aoqi@0 118 }
aoqi@0 119 }
aoqi@0 120
aoqi@0 121 if (src->is_register()) {
aoqi@0 122 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
aoqi@0 123 return !PatchALot;
aoqi@0 124 } else if (dst->is_single_stack()) {
aoqi@0 125 return true;
aoqi@0 126 }
aoqi@0 127 }
aoqi@0 128
aoqi@0 129 if (dst->is_register() &&
aoqi@0 130 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
aoqi@0 131 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
aoqi@0 132 return true;
aoqi@0 133 }
aoqi@0 134
aoqi@0 135 return false;
aoqi@0 136 }
aoqi@0 137
aoqi@0 138 default:
aoqi@0 139 return false;
aoqi@0 140 }
aoqi@0 141 ShouldNotReachHere();
aoqi@0 142 }
aoqi@0 143
aoqi@0 144
aoqi@0 145 LIR_Opr LIR_Assembler::receiverOpr() {
aoqi@0 146 return FrameMap::O0_oop_opr;
aoqi@0 147 }
aoqi@0 148
aoqi@0 149
aoqi@0 150 LIR_Opr LIR_Assembler::osrBufferPointer() {
aoqi@0 151 return FrameMap::I0_opr;
aoqi@0 152 }
aoqi@0 153
aoqi@0 154
aoqi@0 155 int LIR_Assembler::initial_frame_size_in_bytes() const {
aoqi@0 156 return in_bytes(frame_map()->framesize_in_bytes());
aoqi@0 157 }
aoqi@0 158
aoqi@0 159
aoqi@0 160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
aoqi@0 161 // we fetch the class of the receiver (O0) and compare it with the cached class.
aoqi@0 162 // If they do not match we jump to slow case.
aoqi@0 163 int LIR_Assembler::check_icache() {
aoqi@0 164 int offset = __ offset();
aoqi@0 165 __ inline_cache_check(O0, G5_inline_cache_reg);
aoqi@0 166 return offset;
aoqi@0 167 }
aoqi@0 168
aoqi@0 169
aoqi@0 170 void LIR_Assembler::osr_entry() {
aoqi@0 171 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
aoqi@0 172 //
aoqi@0 173 // 1. Create a new compiled activation.
aoqi@0 174 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
aoqi@0 175 // at the osr_bci; it is not initialized.
aoqi@0 176 // 3. Jump to the continuation address in compiled code to resume execution.
aoqi@0 177
aoqi@0 178 // OSR entry point
aoqi@0 179 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
aoqi@0 180 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
aoqi@0 181 ValueStack* entry_state = osr_entry->end()->state();
aoqi@0 182 int number_of_locks = entry_state->locks_size();
aoqi@0 183
aoqi@0 184 // Create a frame for the compiled activation.
aoqi@0 185 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
aoqi@0 186
aoqi@0 187 // OSR buffer is
aoqi@0 188 //
aoqi@0 189 // locals[nlocals-1..0]
aoqi@0 190 // monitors[number_of_locks-1..0]
aoqi@0 191 //
aoqi@0 192 // locals is a direct copy of the interpreter frame so in the osr buffer
aoqi@0 193 // so first slot in the local array is the last local from the interpreter
aoqi@0 194 // and last slot is local[0] (receiver) from the interpreter
aoqi@0 195 //
aoqi@0 196 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
aoqi@0 197 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
aoqi@0 198 // in the interpreter frame (the method lock if a sync method)
aoqi@0 199
aoqi@0 200 // Initialize monitors in the compiled activation.
aoqi@0 201 // I0: pointer to osr buffer
aoqi@0 202 //
aoqi@0 203 // All other registers are dead at this point and the locals will be
aoqi@0 204 // copied into place by code emitted in the IR.
aoqi@0 205
aoqi@0 206 Register OSR_buf = osrBufferPointer()->as_register();
aoqi@0 207 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
aoqi@0 208 int monitor_offset = BytesPerWord * method()->max_locals() +
aoqi@0 209 (2 * BytesPerWord) * (number_of_locks - 1);
aoqi@0 210 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
aoqi@0 211 // the OSR buffer using 2 word entries: first the lock and then
aoqi@0 212 // the oop.
aoqi@0 213 for (int i = 0; i < number_of_locks; i++) {
aoqi@0 214 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
aoqi@0 215 #ifdef ASSERT
aoqi@0 216 // verify the interpreter's monitor has a non-null object
aoqi@0 217 {
aoqi@0 218 Label L;
aoqi@0 219 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
aoqi@0 220 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
aoqi@0 221 __ stop("locked object is NULL");
aoqi@0 222 __ bind(L);
aoqi@0 223 }
aoqi@0 224 #endif // ASSERT
aoqi@0 225 // Copy the lock field into the compiled activation.
aoqi@0 226 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
aoqi@0 227 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
aoqi@0 228 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
aoqi@0 229 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
aoqi@0 230 }
aoqi@0 231 }
aoqi@0 232 }
aoqi@0 233
aoqi@0 234
aoqi@0 235 // Optimized Library calls
aoqi@0 236 // This is the fast version of java.lang.String.compare; it has not
aoqi@0 237 // OSR-entry and therefore, we generate a slow version for OSR's
aoqi@0 238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
aoqi@0 239 Register str0 = left->as_register();
aoqi@0 240 Register str1 = right->as_register();
aoqi@0 241
aoqi@0 242 Label Ldone;
aoqi@0 243
aoqi@0 244 Register result = dst->as_register();
aoqi@0 245 {
aoqi@0 246 // Get a pointer to the first character of string0 in tmp0
aoqi@0 247 // and get string0.length() in str0
aoqi@0 248 // Get a pointer to the first character of string1 in tmp1
aoqi@0 249 // and get string1.length() in str1
aoqi@0 250 // Also, get string0.length()-string1.length() in
aoqi@0 251 // o7 and get the condition code set
aoqi@0 252 // Note: some instructions have been hoisted for better instruction scheduling
aoqi@0 253
aoqi@0 254 Register tmp0 = L0;
aoqi@0 255 Register tmp1 = L1;
aoqi@0 256 Register tmp2 = L2;
aoqi@0 257
aoqi@0 258 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
aoqi@0 259 if (java_lang_String::has_offset_field()) {
aoqi@0 260 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
aoqi@0 261 int count_offset = java_lang_String:: count_offset_in_bytes();
aoqi@0 262 __ load_heap_oop(str0, value_offset, tmp0);
aoqi@0 263 __ ld(str0, offset_offset, tmp2);
aoqi@0 264 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
aoqi@0 265 __ ld(str0, count_offset, str0);
aoqi@0 266 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
aoqi@0 267 } else {
aoqi@0 268 __ load_heap_oop(str0, value_offset, tmp1);
aoqi@0 269 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
aoqi@0 270 __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
aoqi@0 271 }
aoqi@0 272
aoqi@0 273 // str1 may be null
aoqi@0 274 add_debug_info_for_null_check_here(info);
aoqi@0 275
aoqi@0 276 if (java_lang_String::has_offset_field()) {
aoqi@0 277 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
aoqi@0 278 int count_offset = java_lang_String:: count_offset_in_bytes();
aoqi@0 279 __ load_heap_oop(str1, value_offset, tmp1);
aoqi@0 280 __ add(tmp0, tmp2, tmp0);
aoqi@0 281
aoqi@0 282 __ ld(str1, offset_offset, tmp2);
aoqi@0 283 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
aoqi@0 284 __ ld(str1, count_offset, str1);
aoqi@0 285 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
aoqi@0 286 __ add(tmp1, tmp2, tmp1);
aoqi@0 287 } else {
aoqi@0 288 __ load_heap_oop(str1, value_offset, tmp2);
aoqi@0 289 __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
aoqi@0 290 __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
aoqi@0 291 }
aoqi@0 292 __ subcc(str0, str1, O7);
aoqi@0 293 }
aoqi@0 294
aoqi@0 295 {
aoqi@0 296 // Compute the minimum of the string lengths, scale it and store it in limit
aoqi@0 297 Register count0 = I0;
aoqi@0 298 Register count1 = I1;
aoqi@0 299 Register limit = L3;
aoqi@0 300
aoqi@0 301 Label Lskip;
aoqi@0 302 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
aoqi@0 303 __ br(Assembler::greater, true, Assembler::pt, Lskip);
aoqi@0 304 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
aoqi@0 305 __ bind(Lskip);
aoqi@0 306
aoqi@0 307 // If either string is empty (or both of them) the result is the difference in lengths
aoqi@0 308 __ cmp(limit, 0);
aoqi@0 309 __ br(Assembler::equal, true, Assembler::pn, Ldone);
aoqi@0 310 __ delayed()->mov(O7, result); // result is difference in lengths
aoqi@0 311 }
aoqi@0 312
aoqi@0 313 {
aoqi@0 314 // Neither string is empty
aoqi@0 315 Label Lloop;
aoqi@0 316
aoqi@0 317 Register base0 = L0;
aoqi@0 318 Register base1 = L1;
aoqi@0 319 Register chr0 = I0;
aoqi@0 320 Register chr1 = I1;
aoqi@0 321 Register limit = L3;
aoqi@0 322
aoqi@0 323 // Shift base0 and base1 to the end of the arrays, negate limit
aoqi@0 324 __ add(base0, limit, base0);
aoqi@0 325 __ add(base1, limit, base1);
aoqi@0 326 __ neg(limit); // limit = -min{string0.length(), string1.length()}
aoqi@0 327
aoqi@0 328 __ lduh(base0, limit, chr0);
aoqi@0 329 __ bind(Lloop);
aoqi@0 330 __ lduh(base1, limit, chr1);
aoqi@0 331 __ subcc(chr0, chr1, chr0);
aoqi@0 332 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
aoqi@0 333 assert(chr0 == result, "result must be pre-placed");
aoqi@0 334 __ delayed()->inccc(limit, sizeof(jchar));
aoqi@0 335 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
aoqi@0 336 __ delayed()->lduh(base0, limit, chr0);
aoqi@0 337 }
aoqi@0 338
aoqi@0 339 // If strings are equal up to min length, return the length difference.
aoqi@0 340 __ mov(O7, result);
aoqi@0 341
aoqi@0 342 // Otherwise, return the difference between the first mismatched chars.
aoqi@0 343 __ bind(Ldone);
aoqi@0 344 }
aoqi@0 345
aoqi@0 346
aoqi@0 347 // --------------------------------------------------------------------------------------------
aoqi@0 348
aoqi@0 349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
aoqi@0 350 if (!GenerateSynchronizationCode) return;
aoqi@0 351
aoqi@0 352 Register obj_reg = obj_opr->as_register();
aoqi@0 353 Register lock_reg = lock_opr->as_register();
aoqi@0 354
aoqi@0 355 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
aoqi@0 356 Register reg = mon_addr.base();
aoqi@0 357 int offset = mon_addr.disp();
aoqi@0 358 // compute pointer to BasicLock
aoqi@0 359 if (mon_addr.is_simm13()) {
aoqi@0 360 __ add(reg, offset, lock_reg);
aoqi@0 361 }
aoqi@0 362 else {
aoqi@0 363 __ set(offset, lock_reg);
aoqi@0 364 __ add(reg, lock_reg, lock_reg);
aoqi@0 365 }
aoqi@0 366 // unlock object
aoqi@0 367 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
aoqi@0 368 // _slow_case_stubs->append(slow_case);
aoqi@0 369 // temporary fix: must be created after exceptionhandler, therefore as call stub
aoqi@0 370 _slow_case_stubs->append(slow_case);
aoqi@0 371 if (UseFastLocking) {
aoqi@0 372 // try inlined fast unlocking first, revert to slow locking if it fails
aoqi@0 373 // note: lock_reg points to the displaced header since the displaced header offset is 0!
aoqi@0 374 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
aoqi@0 375 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
aoqi@0 376 } else {
aoqi@0 377 // always do slow unlocking
aoqi@0 378 // note: the slow unlocking code could be inlined here, however if we use
aoqi@0 379 // slow unlocking, speed doesn't matter anyway and this solution is
aoqi@0 380 // simpler and requires less duplicated code - additionally, the
aoqi@0 381 // slow unlocking code is the same in either case which simplifies
aoqi@0 382 // debugging
aoqi@0 383 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
aoqi@0 384 __ delayed()->nop();
aoqi@0 385 }
aoqi@0 386 // done
aoqi@0 387 __ bind(*slow_case->continuation());
aoqi@0 388 }
aoqi@0 389
aoqi@0 390
aoqi@0 391 int LIR_Assembler::emit_exception_handler() {
aoqi@0 392 // if the last instruction is a call (typically to do a throw which
aoqi@0 393 // is coming at the end after block reordering) the return address
aoqi@0 394 // must still point into the code area in order to avoid assertion
aoqi@0 395 // failures when searching for the corresponding bci => add a nop
aoqi@0 396 // (was bug 5/14/1999 - gri)
aoqi@0 397 __ nop();
aoqi@0 398
aoqi@0 399 // generate code for exception handler
aoqi@0 400 ciMethod* method = compilation()->method();
aoqi@0 401
aoqi@0 402 address handler_base = __ start_a_stub(exception_handler_size);
aoqi@0 403
aoqi@0 404 if (handler_base == NULL) {
aoqi@0 405 // not enough space left for the handler
aoqi@0 406 bailout("exception handler overflow");
aoqi@0 407 return -1;
aoqi@0 408 }
aoqi@0 409
aoqi@0 410 int offset = code_offset();
aoqi@0 411
aoqi@0 412 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
aoqi@0 413 __ delayed()->nop();
aoqi@0 414 __ should_not_reach_here();
aoqi@0 415 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
aoqi@0 416 __ end_a_stub();
aoqi@0 417
aoqi@0 418 return offset;
aoqi@0 419 }
aoqi@0 420
aoqi@0 421
aoqi@0 422 // Emit the code to remove the frame from the stack in the exception
aoqi@0 423 // unwind path.
aoqi@0 424 int LIR_Assembler::emit_unwind_handler() {
aoqi@0 425 #ifndef PRODUCT
aoqi@0 426 if (CommentedAssembly) {
aoqi@0 427 _masm->block_comment("Unwind handler");
aoqi@0 428 }
aoqi@0 429 #endif
aoqi@0 430
aoqi@0 431 int offset = code_offset();
aoqi@0 432
aoqi@0 433 // Fetch the exception from TLS and clear out exception related thread state
aoqi@0 434 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
aoqi@0 435 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
aoqi@0 436 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
aoqi@0 437
aoqi@0 438 __ bind(_unwind_handler_entry);
aoqi@0 439 __ verify_not_null_oop(O0);
aoqi@0 440 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
aoqi@0 441 __ mov(O0, I0); // Preserve the exception
aoqi@0 442 }
aoqi@0 443
aoqi@0 444 // Preform needed unlocking
aoqi@0 445 MonitorExitStub* stub = NULL;
aoqi@0 446 if (method()->is_synchronized()) {
aoqi@0 447 monitor_address(0, FrameMap::I1_opr);
aoqi@0 448 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
aoqi@0 449 __ unlock_object(I3, I2, I1, *stub->entry());
aoqi@0 450 __ bind(*stub->continuation());
aoqi@0 451 }
aoqi@0 452
aoqi@0 453 if (compilation()->env()->dtrace_method_probes()) {
aoqi@0 454 __ mov(G2_thread, O0);
aoqi@0 455 __ save_thread(I1); // need to preserve thread in G2 across
aoqi@0 456 // runtime call
aoqi@0 457 metadata2reg(method()->constant_encoding(), O1);
aoqi@0 458 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
aoqi@0 459 __ delayed()->nop();
aoqi@0 460 __ restore_thread(I1);
aoqi@0 461 }
aoqi@0 462
aoqi@0 463 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
aoqi@0 464 __ mov(I0, O0); // Restore the exception
aoqi@0 465 }
aoqi@0 466
aoqi@0 467 // dispatch to the unwind logic
aoqi@0 468 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
aoqi@0 469 __ delayed()->nop();
aoqi@0 470
aoqi@0 471 // Emit the slow path assembly
aoqi@0 472 if (stub != NULL) {
aoqi@0 473 stub->emit_code(this);
aoqi@0 474 }
aoqi@0 475
aoqi@0 476 return offset;
aoqi@0 477 }
aoqi@0 478
aoqi@0 479
aoqi@0 480 int LIR_Assembler::emit_deopt_handler() {
aoqi@0 481 // if the last instruction is a call (typically to do a throw which
aoqi@0 482 // is coming at the end after block reordering) the return address
aoqi@0 483 // must still point into the code area in order to avoid assertion
aoqi@0 484 // failures when searching for the corresponding bci => add a nop
aoqi@0 485 // (was bug 5/14/1999 - gri)
aoqi@0 486 __ nop();
aoqi@0 487
aoqi@0 488 // generate code for deopt handler
aoqi@0 489 ciMethod* method = compilation()->method();
aoqi@0 490 address handler_base = __ start_a_stub(deopt_handler_size);
aoqi@0 491 if (handler_base == NULL) {
aoqi@0 492 // not enough space left for the handler
aoqi@0 493 bailout("deopt handler overflow");
aoqi@0 494 return -1;
aoqi@0 495 }
aoqi@0 496
aoqi@0 497 int offset = code_offset();
aoqi@0 498 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
aoqi@0 499 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
aoqi@0 500 __ delayed()->nop();
aoqi@0 501 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
aoqi@0 502 __ end_a_stub();
aoqi@0 503
aoqi@0 504 return offset;
aoqi@0 505 }
aoqi@0 506
aoqi@0 507
aoqi@0 508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
aoqi@0 509 if (o == NULL) {
aoqi@0 510 __ set(NULL_WORD, reg);
aoqi@0 511 } else {
aoqi@0 512 int oop_index = __ oop_recorder()->find_index(o);
aoqi@0 513 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
aoqi@0 514 RelocationHolder rspec = oop_Relocation::spec(oop_index);
aoqi@0 515 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
aoqi@0 516 }
aoqi@0 517 }
aoqi@0 518
aoqi@0 519
aoqi@0 520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
aoqi@0 521 // Allocate a new index in table to hold the object once it's been patched
aoqi@0 522 int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
aoqi@0 523 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
aoqi@0 524
aoqi@0 525 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
aoqi@0 526 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
aoqi@0 527 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
aoqi@0 528 // NULL will be dynamically patched later and the patched value may be large. We must
aoqi@0 529 // therefore generate the sethi/add as a placeholders
aoqi@0 530 __ patchable_set(addrlit, reg);
aoqi@0 531
aoqi@0 532 patching_epilog(patch, lir_patch_normal, reg, info);
aoqi@0 533 }
aoqi@0 534
aoqi@0 535
aoqi@0 536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
aoqi@0 537 __ set_metadata_constant(o, reg);
aoqi@0 538 }
aoqi@0 539
aoqi@0 540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
aoqi@0 541 // Allocate a new index in table to hold the klass once it's been patched
aoqi@0 542 int index = __ oop_recorder()->allocate_metadata_index(NULL);
aoqi@0 543 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
aoqi@0 544 AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
aoqi@0 545 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
aoqi@0 546 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
aoqi@0 547 // NULL will be dynamically patched later and the patched value may be large. We must
aoqi@0 548 // therefore generate the sethi/add as a placeholders
aoqi@0 549 __ patchable_set(addrlit, reg);
aoqi@0 550
aoqi@0 551 patching_epilog(patch, lir_patch_normal, reg, info);
aoqi@0 552 }
aoqi@0 553
aoqi@0 554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
aoqi@0 555 Register Rdividend = op->in_opr1()->as_register();
aoqi@0 556 Register Rdivisor = noreg;
aoqi@0 557 Register Rscratch = op->in_opr3()->as_register();
aoqi@0 558 Register Rresult = op->result_opr()->as_register();
aoqi@0 559 int divisor = -1;
aoqi@0 560
aoqi@0 561 if (op->in_opr2()->is_register()) {
aoqi@0 562 Rdivisor = op->in_opr2()->as_register();
aoqi@0 563 } else {
aoqi@0 564 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
aoqi@0 565 assert(Assembler::is_simm13(divisor), "can only handle simm13");
aoqi@0 566 }
aoqi@0 567
aoqi@0 568 assert(Rdividend != Rscratch, "");
aoqi@0 569 assert(Rdivisor != Rscratch, "");
aoqi@0 570 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
aoqi@0 571
aoqi@0 572 if (Rdivisor == noreg && is_power_of_2(divisor)) {
aoqi@0 573 // convert division by a power of two into some shifts and logical operations
aoqi@0 574 if (op->code() == lir_idiv) {
aoqi@0 575 if (divisor == 2) {
aoqi@0 576 __ srl(Rdividend, 31, Rscratch);
aoqi@0 577 } else {
aoqi@0 578 __ sra(Rdividend, 31, Rscratch);
aoqi@0 579 __ and3(Rscratch, divisor - 1, Rscratch);
aoqi@0 580 }
aoqi@0 581 __ add(Rdividend, Rscratch, Rscratch);
aoqi@0 582 __ sra(Rscratch, log2_intptr(divisor), Rresult);
aoqi@0 583 return;
aoqi@0 584 } else {
aoqi@0 585 if (divisor == 2) {
aoqi@0 586 __ srl(Rdividend, 31, Rscratch);
aoqi@0 587 } else {
aoqi@0 588 __ sra(Rdividend, 31, Rscratch);
aoqi@0 589 __ and3(Rscratch, divisor - 1,Rscratch);
aoqi@0 590 }
aoqi@0 591 __ add(Rdividend, Rscratch, Rscratch);
aoqi@0 592 __ andn(Rscratch, divisor - 1,Rscratch);
aoqi@0 593 __ sub(Rdividend, Rscratch, Rresult);
aoqi@0 594 return;
aoqi@0 595 }
aoqi@0 596 }
aoqi@0 597
aoqi@0 598 __ sra(Rdividend, 31, Rscratch);
aoqi@0 599 __ wry(Rscratch);
aoqi@0 600
aoqi@0 601 add_debug_info_for_div0_here(op->info());
aoqi@0 602
aoqi@0 603 if (Rdivisor != noreg) {
aoqi@0 604 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
aoqi@0 605 } else {
aoqi@0 606 assert(Assembler::is_simm13(divisor), "can only handle simm13");
aoqi@0 607 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
aoqi@0 608 }
aoqi@0 609
aoqi@0 610 Label skip;
aoqi@0 611 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
aoqi@0 612 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
aoqi@0 613 __ bind(skip);
aoqi@0 614
aoqi@0 615 if (op->code() == lir_irem) {
aoqi@0 616 if (Rdivisor != noreg) {
aoqi@0 617 __ smul(Rscratch, Rdivisor, Rscratch);
aoqi@0 618 } else {
aoqi@0 619 __ smul(Rscratch, divisor, Rscratch);
aoqi@0 620 }
aoqi@0 621 __ sub(Rdividend, Rscratch, Rresult);
aoqi@0 622 }
aoqi@0 623 }
aoqi@0 624
aoqi@0 625
aoqi@0 626 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
aoqi@0 627 #ifdef ASSERT
aoqi@0 628 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
aoqi@0 629 if (op->block() != NULL) _branch_target_blocks.append(op->block());
aoqi@0 630 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
aoqi@0 631 #endif
aoqi@0 632 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
aoqi@0 633
aoqi@0 634 if (op->cond() == lir_cond_always) {
aoqi@0 635 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
aoqi@0 636 } else if (op->code() == lir_cond_float_branch) {
aoqi@0 637 assert(op->ublock() != NULL, "must have unordered successor");
aoqi@0 638 bool is_unordered = (op->ublock() == op->block());
aoqi@0 639 Assembler::Condition acond;
aoqi@0 640 switch (op->cond()) {
aoqi@0 641 case lir_cond_equal: acond = Assembler::f_equal; break;
aoqi@0 642 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
aoqi@0 643 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
aoqi@0 644 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
aoqi@0 645 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
aoqi@0 646 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
aoqi@0 647 default : ShouldNotReachHere();
aoqi@0 648 }
aoqi@0 649 __ fb( acond, false, Assembler::pn, *(op->label()));
aoqi@0 650 } else {
aoqi@0 651 assert (op->code() == lir_branch, "just checking");
aoqi@0 652
aoqi@0 653 Assembler::Condition acond;
aoqi@0 654 switch (op->cond()) {
aoqi@0 655 case lir_cond_equal: acond = Assembler::equal; break;
aoqi@0 656 case lir_cond_notEqual: acond = Assembler::notEqual; break;
aoqi@0 657 case lir_cond_less: acond = Assembler::less; break;
aoqi@0 658 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
aoqi@0 659 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
aoqi@0 660 case lir_cond_greater: acond = Assembler::greater; break;
aoqi@0 661 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
aoqi@0 662 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
aoqi@0 663 default: ShouldNotReachHere();
aoqi@0 664 };
aoqi@0 665
aoqi@0 666 // sparc has different condition codes for testing 32-bit
aoqi@0 667 // vs. 64-bit values. We could always test xcc is we could
aoqi@0 668 // guarantee that 32-bit loads always sign extended but that isn't
aoqi@0 669 // true and since sign extension isn't free, it would impose a
aoqi@0 670 // slight cost.
aoqi@0 671 #ifdef _LP64
aoqi@0 672 if (op->type() == T_INT) {
aoqi@0 673 __ br(acond, false, Assembler::pn, *(op->label()));
aoqi@0 674 } else
aoqi@0 675 #endif
aoqi@0 676 __ brx(acond, false, Assembler::pn, *(op->label()));
aoqi@0 677 }
aoqi@0 678 // The peephole pass fills the delay slot
aoqi@0 679 }
aoqi@0 680
aoqi@0 681
aoqi@0 682 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
aoqi@0 683 Bytecodes::Code code = op->bytecode();
aoqi@0 684 LIR_Opr dst = op->result_opr();
aoqi@0 685
aoqi@0 686 switch(code) {
aoqi@0 687 case Bytecodes::_i2l: {
aoqi@0 688 Register rlo = dst->as_register_lo();
aoqi@0 689 Register rhi = dst->as_register_hi();
aoqi@0 690 Register rval = op->in_opr()->as_register();
aoqi@0 691 #ifdef _LP64
aoqi@0 692 __ sra(rval, 0, rlo);
aoqi@0 693 #else
aoqi@0 694 __ mov(rval, rlo);
aoqi@0 695 __ sra(rval, BitsPerInt-1, rhi);
aoqi@0 696 #endif
aoqi@0 697 break;
aoqi@0 698 }
aoqi@0 699 case Bytecodes::_i2d:
aoqi@0 700 case Bytecodes::_i2f: {
aoqi@0 701 bool is_double = (code == Bytecodes::_i2d);
aoqi@0 702 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
aoqi@0 703 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
aoqi@0 704 FloatRegister rsrc = op->in_opr()->as_float_reg();
aoqi@0 705 if (rsrc != rdst) {
aoqi@0 706 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
aoqi@0 707 }
aoqi@0 708 __ fitof(w, rdst, rdst);
aoqi@0 709 break;
aoqi@0 710 }
aoqi@0 711 case Bytecodes::_f2i:{
aoqi@0 712 FloatRegister rsrc = op->in_opr()->as_float_reg();
aoqi@0 713 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
aoqi@0 714 Label L;
aoqi@0 715 // result must be 0 if value is NaN; test by comparing value to itself
aoqi@0 716 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
aoqi@0 717 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
aoqi@0 718 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
aoqi@0 719 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
aoqi@0 720 // move integer result from float register to int register
aoqi@0 721 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
aoqi@0 722 __ bind (L);
aoqi@0 723 break;
aoqi@0 724 }
aoqi@0 725 case Bytecodes::_l2i: {
aoqi@0 726 Register rlo = op->in_opr()->as_register_lo();
aoqi@0 727 Register rhi = op->in_opr()->as_register_hi();
aoqi@0 728 Register rdst = dst->as_register();
aoqi@0 729 #ifdef _LP64
aoqi@0 730 __ sra(rlo, 0, rdst);
aoqi@0 731 #else
aoqi@0 732 __ mov(rlo, rdst);
aoqi@0 733 #endif
aoqi@0 734 break;
aoqi@0 735 }
aoqi@0 736 case Bytecodes::_d2f:
aoqi@0 737 case Bytecodes::_f2d: {
aoqi@0 738 bool is_double = (code == Bytecodes::_f2d);
aoqi@0 739 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
aoqi@0 740 LIR_Opr val = op->in_opr();
aoqi@0 741 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
aoqi@0 742 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
aoqi@0 743 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
aoqi@0 744 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
aoqi@0 745 __ ftof(vw, dw, rval, rdst);
aoqi@0 746 break;
aoqi@0 747 }
aoqi@0 748 case Bytecodes::_i2s:
aoqi@0 749 case Bytecodes::_i2b: {
aoqi@0 750 Register rval = op->in_opr()->as_register();
aoqi@0 751 Register rdst = dst->as_register();
aoqi@0 752 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
aoqi@0 753 __ sll (rval, shift, rdst);
aoqi@0 754 __ sra (rdst, shift, rdst);
aoqi@0 755 break;
aoqi@0 756 }
aoqi@0 757 case Bytecodes::_i2c: {
aoqi@0 758 Register rval = op->in_opr()->as_register();
aoqi@0 759 Register rdst = dst->as_register();
aoqi@0 760 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
aoqi@0 761 __ sll (rval, shift, rdst);
aoqi@0 762 __ srl (rdst, shift, rdst);
aoqi@0 763 break;
aoqi@0 764 }
aoqi@0 765
aoqi@0 766 default: ShouldNotReachHere();
aoqi@0 767 }
aoqi@0 768 }
aoqi@0 769
aoqi@0 770
aoqi@0 771 void LIR_Assembler::align_call(LIR_Code) {
aoqi@0 772 // do nothing since all instructions are word aligned on sparc
aoqi@0 773 }
aoqi@0 774
aoqi@0 775
aoqi@0 776 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
aoqi@0 777 __ call(op->addr(), rtype);
aoqi@0 778 // The peephole pass fills the delay slot, add_call_info is done in
aoqi@0 779 // LIR_Assembler::emit_delay.
aoqi@0 780 }
aoqi@0 781
aoqi@0 782
aoqi@0 783 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
aoqi@0 784 __ ic_call(op->addr(), false);
aoqi@0 785 // The peephole pass fills the delay slot, add_call_info is done in
aoqi@0 786 // LIR_Assembler::emit_delay.
aoqi@0 787 }
aoqi@0 788
aoqi@0 789
aoqi@0 790 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
aoqi@0 791 add_debug_info_for_null_check_here(op->info());
aoqi@0 792 __ load_klass(O0, G3_scratch);
aoqi@0 793 if (Assembler::is_simm13(op->vtable_offset())) {
aoqi@0 794 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
aoqi@0 795 } else {
aoqi@0 796 // This will generate 2 instructions
aoqi@0 797 __ set(op->vtable_offset(), G5_method);
aoqi@0 798 // ld_ptr, set_hi, set
aoqi@0 799 __ ld_ptr(G3_scratch, G5_method, G5_method);
aoqi@0 800 }
aoqi@0 801 __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
aoqi@0 802 __ callr(G3_scratch, G0);
aoqi@0 803 // the peephole pass fills the delay slot
aoqi@0 804 }
aoqi@0 805
aoqi@0 806 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
aoqi@0 807 int store_offset;
aoqi@0 808 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
aoqi@0 809 assert(!unaligned, "can't handle this");
aoqi@0 810 // for offsets larger than a simm13 we setup the offset in O7
aoqi@0 811 __ set(offset, O7);
aoqi@0 812 store_offset = store(from_reg, base, O7, type, wide);
aoqi@0 813 } else {
aoqi@0 814 if (type == T_ARRAY || type == T_OBJECT) {
aoqi@0 815 __ verify_oop(from_reg->as_register());
aoqi@0 816 }
aoqi@0 817 store_offset = code_offset();
aoqi@0 818 switch (type) {
aoqi@0 819 case T_BOOLEAN: // fall through
aoqi@0 820 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
aoqi@0 821 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
aoqi@0 822 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
aoqi@0 823 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
aoqi@0 824 case T_LONG :
aoqi@0 825 #ifdef _LP64
aoqi@0 826 if (unaligned || PatchALot) {
aoqi@0 827 __ srax(from_reg->as_register_lo(), 32, O7);
aoqi@0 828 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
aoqi@0 829 __ stw(O7, base, offset + hi_word_offset_in_bytes);
aoqi@0 830 } else {
aoqi@0 831 __ stx(from_reg->as_register_lo(), base, offset);
aoqi@0 832 }
aoqi@0 833 #else
aoqi@0 834 assert(Assembler::is_simm13(offset + 4), "must be");
aoqi@0 835 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
aoqi@0 836 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
aoqi@0 837 #endif
aoqi@0 838 break;
aoqi@0 839 case T_ADDRESS:
aoqi@0 840 case T_METADATA:
aoqi@0 841 __ st_ptr(from_reg->as_register(), base, offset);
aoqi@0 842 break;
aoqi@0 843 case T_ARRAY : // fall through
aoqi@0 844 case T_OBJECT:
aoqi@0 845 {
aoqi@0 846 if (UseCompressedOops && !wide) {
aoqi@0 847 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
aoqi@0 848 store_offset = code_offset();
aoqi@0 849 __ stw(G3_scratch, base, offset);
aoqi@0 850 } else {
aoqi@0 851 __ st_ptr(from_reg->as_register(), base, offset);
aoqi@0 852 }
aoqi@0 853 break;
aoqi@0 854 }
aoqi@0 855
aoqi@0 856 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
aoqi@0 857 case T_DOUBLE:
aoqi@0 858 {
aoqi@0 859 FloatRegister reg = from_reg->as_double_reg();
aoqi@0 860 // split unaligned stores
aoqi@0 861 if (unaligned || PatchALot) {
aoqi@0 862 assert(Assembler::is_simm13(offset + 4), "must be");
aoqi@0 863 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
aoqi@0 864 __ stf(FloatRegisterImpl::S, reg, base, offset);
aoqi@0 865 } else {
aoqi@0 866 __ stf(FloatRegisterImpl::D, reg, base, offset);
aoqi@0 867 }
aoqi@0 868 break;
aoqi@0 869 }
aoqi@0 870 default : ShouldNotReachHere();
aoqi@0 871 }
aoqi@0 872 }
aoqi@0 873 return store_offset;
aoqi@0 874 }
aoqi@0 875
aoqi@0 876
aoqi@0 877 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
aoqi@0 878 if (type == T_ARRAY || type == T_OBJECT) {
aoqi@0 879 __ verify_oop(from_reg->as_register());
aoqi@0 880 }
aoqi@0 881 int store_offset = code_offset();
aoqi@0 882 switch (type) {
aoqi@0 883 case T_BOOLEAN: // fall through
aoqi@0 884 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
aoqi@0 885 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
aoqi@0 886 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
aoqi@0 887 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
aoqi@0 888 case T_LONG :
aoqi@0 889 #ifdef _LP64
aoqi@0 890 __ stx(from_reg->as_register_lo(), base, disp);
aoqi@0 891 #else
aoqi@0 892 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
aoqi@0 893 __ std(from_reg->as_register_hi(), base, disp);
aoqi@0 894 #endif
aoqi@0 895 break;
aoqi@0 896 case T_ADDRESS:
aoqi@0 897 __ st_ptr(from_reg->as_register(), base, disp);
aoqi@0 898 break;
aoqi@0 899 case T_ARRAY : // fall through
aoqi@0 900 case T_OBJECT:
aoqi@0 901 {
aoqi@0 902 if (UseCompressedOops && !wide) {
aoqi@0 903 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
aoqi@0 904 store_offset = code_offset();
aoqi@0 905 __ stw(G3_scratch, base, disp);
aoqi@0 906 } else {
aoqi@0 907 __ st_ptr(from_reg->as_register(), base, disp);
aoqi@0 908 }
aoqi@0 909 break;
aoqi@0 910 }
aoqi@0 911 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
aoqi@0 912 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
aoqi@0 913 default : ShouldNotReachHere();
aoqi@0 914 }
aoqi@0 915 return store_offset;
aoqi@0 916 }
aoqi@0 917
aoqi@0 918
aoqi@0 919 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
aoqi@0 920 int load_offset;
aoqi@0 921 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
aoqi@0 922 assert(base != O7, "destroying register");
aoqi@0 923 assert(!unaligned, "can't handle this");
aoqi@0 924 // for offsets larger than a simm13 we setup the offset in O7
aoqi@0 925 __ set(offset, O7);
aoqi@0 926 load_offset = load(base, O7, to_reg, type, wide);
aoqi@0 927 } else {
aoqi@0 928 load_offset = code_offset();
aoqi@0 929 switch(type) {
aoqi@0 930 case T_BOOLEAN: // fall through
aoqi@0 931 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
aoqi@0 932 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
aoqi@0 933 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
aoqi@0 934 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
aoqi@0 935 case T_LONG :
aoqi@0 936 if (!unaligned) {
aoqi@0 937 #ifdef _LP64
aoqi@0 938 __ ldx(base, offset, to_reg->as_register_lo());
aoqi@0 939 #else
aoqi@0 940 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
aoqi@0 941 "must be sequential");
aoqi@0 942 __ ldd(base, offset, to_reg->as_register_hi());
aoqi@0 943 #endif
aoqi@0 944 } else {
aoqi@0 945 #ifdef _LP64
aoqi@0 946 assert(base != to_reg->as_register_lo(), "can't handle this");
aoqi@0 947 assert(O7 != to_reg->as_register_lo(), "can't handle this");
aoqi@0 948 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
aoqi@0 949 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
aoqi@0 950 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
aoqi@0 951 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
aoqi@0 952 #else
aoqi@0 953 if (base == to_reg->as_register_lo()) {
aoqi@0 954 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
aoqi@0 955 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
aoqi@0 956 } else {
aoqi@0 957 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
aoqi@0 958 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
aoqi@0 959 }
aoqi@0 960 #endif
aoqi@0 961 }
aoqi@0 962 break;
aoqi@0 963 case T_METADATA: __ ld_ptr(base, offset, to_reg->as_register()); break;
aoqi@0 964 case T_ADDRESS:
aoqi@0 965 #ifdef _LP64
aoqi@0 966 if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
aoqi@0 967 __ lduw(base, offset, to_reg->as_register());
aoqi@0 968 __ decode_klass_not_null(to_reg->as_register());
aoqi@0 969 } else
aoqi@0 970 #endif
aoqi@0 971 {
aoqi@0 972 __ ld_ptr(base, offset, to_reg->as_register());
aoqi@0 973 }
aoqi@0 974 break;
aoqi@0 975 case T_ARRAY : // fall through
aoqi@0 976 case T_OBJECT:
aoqi@0 977 {
aoqi@0 978 if (UseCompressedOops && !wide) {
aoqi@0 979 __ lduw(base, offset, to_reg->as_register());
aoqi@0 980 __ decode_heap_oop(to_reg->as_register());
aoqi@0 981 } else {
aoqi@0 982 __ ld_ptr(base, offset, to_reg->as_register());
aoqi@0 983 }
aoqi@0 984 break;
aoqi@0 985 }
aoqi@0 986 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
aoqi@0 987 case T_DOUBLE:
aoqi@0 988 {
aoqi@0 989 FloatRegister reg = to_reg->as_double_reg();
aoqi@0 990 // split unaligned loads
aoqi@0 991 if (unaligned || PatchALot) {
aoqi@0 992 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
aoqi@0 993 __ ldf(FloatRegisterImpl::S, base, offset, reg);
aoqi@0 994 } else {
aoqi@0 995 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
aoqi@0 996 }
aoqi@0 997 break;
aoqi@0 998 }
aoqi@0 999 default : ShouldNotReachHere();
aoqi@0 1000 }
aoqi@0 1001 if (type == T_ARRAY || type == T_OBJECT) {
aoqi@0 1002 __ verify_oop(to_reg->as_register());
aoqi@0 1003 }
aoqi@0 1004 }
aoqi@0 1005 return load_offset;
aoqi@0 1006 }
aoqi@0 1007
aoqi@0 1008
aoqi@0 1009 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
aoqi@0 1010 int load_offset = code_offset();
aoqi@0 1011 switch(type) {
aoqi@0 1012 case T_BOOLEAN: // fall through
aoqi@0 1013 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
aoqi@0 1014 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
aoqi@0 1015 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
aoqi@0 1016 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
aoqi@0 1017 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
aoqi@0 1018 case T_ARRAY : // fall through
aoqi@0 1019 case T_OBJECT:
aoqi@0 1020 {
aoqi@0 1021 if (UseCompressedOops && !wide) {
aoqi@0 1022 __ lduw(base, disp, to_reg->as_register());
aoqi@0 1023 __ decode_heap_oop(to_reg->as_register());
aoqi@0 1024 } else {
aoqi@0 1025 __ ld_ptr(base, disp, to_reg->as_register());
aoqi@0 1026 }
aoqi@0 1027 break;
aoqi@0 1028 }
aoqi@0 1029 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
aoqi@0 1030 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
aoqi@0 1031 case T_LONG :
aoqi@0 1032 #ifdef _LP64
aoqi@0 1033 __ ldx(base, disp, to_reg->as_register_lo());
aoqi@0 1034 #else
aoqi@0 1035 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
aoqi@0 1036 "must be sequential");
aoqi@0 1037 __ ldd(base, disp, to_reg->as_register_hi());
aoqi@0 1038 #endif
aoqi@0 1039 break;
aoqi@0 1040 default : ShouldNotReachHere();
aoqi@0 1041 }
aoqi@0 1042 if (type == T_ARRAY || type == T_OBJECT) {
aoqi@0 1043 __ verify_oop(to_reg->as_register());
aoqi@0 1044 }
aoqi@0 1045 return load_offset;
aoqi@0 1046 }
aoqi@0 1047
aoqi@0 1048 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
aoqi@0 1049 LIR_Const* c = src->as_constant_ptr();
aoqi@0 1050 switch (c->type()) {
aoqi@0 1051 case T_INT:
aoqi@0 1052 case T_FLOAT: {
aoqi@0 1053 Register src_reg = O7;
aoqi@0 1054 int value = c->as_jint_bits();
aoqi@0 1055 if (value == 0) {
aoqi@0 1056 src_reg = G0;
aoqi@0 1057 } else {
aoqi@0 1058 __ set(value, O7);
aoqi@0 1059 }
aoqi@0 1060 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1061 __ stw(src_reg, addr.base(), addr.disp());
aoqi@0 1062 break;
aoqi@0 1063 }
aoqi@0 1064 case T_ADDRESS: {
aoqi@0 1065 Register src_reg = O7;
aoqi@0 1066 int value = c->as_jint_bits();
aoqi@0 1067 if (value == 0) {
aoqi@0 1068 src_reg = G0;
aoqi@0 1069 } else {
aoqi@0 1070 __ set(value, O7);
aoqi@0 1071 }
aoqi@0 1072 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1073 __ st_ptr(src_reg, addr.base(), addr.disp());
aoqi@0 1074 break;
aoqi@0 1075 }
aoqi@0 1076 case T_OBJECT: {
aoqi@0 1077 Register src_reg = O7;
aoqi@0 1078 jobject2reg(c->as_jobject(), src_reg);
aoqi@0 1079 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1080 __ st_ptr(src_reg, addr.base(), addr.disp());
aoqi@0 1081 break;
aoqi@0 1082 }
aoqi@0 1083 case T_LONG:
aoqi@0 1084 case T_DOUBLE: {
aoqi@0 1085 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
aoqi@0 1086
aoqi@0 1087 Register tmp = O7;
aoqi@0 1088 int value_lo = c->as_jint_lo_bits();
aoqi@0 1089 if (value_lo == 0) {
aoqi@0 1090 tmp = G0;
aoqi@0 1091 } else {
aoqi@0 1092 __ set(value_lo, O7);
aoqi@0 1093 }
aoqi@0 1094 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
aoqi@0 1095 int value_hi = c->as_jint_hi_bits();
aoqi@0 1096 if (value_hi == 0) {
aoqi@0 1097 tmp = G0;
aoqi@0 1098 } else {
aoqi@0 1099 __ set(value_hi, O7);
aoqi@0 1100 }
aoqi@0 1101 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
aoqi@0 1102 break;
aoqi@0 1103 }
aoqi@0 1104 default:
aoqi@0 1105 Unimplemented();
aoqi@0 1106 }
aoqi@0 1107 }
aoqi@0 1108
aoqi@0 1109
aoqi@0 1110 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
aoqi@0 1111 LIR_Const* c = src->as_constant_ptr();
aoqi@0 1112 LIR_Address* addr = dest->as_address_ptr();
aoqi@0 1113 Register base = addr->base()->as_pointer_register();
aoqi@0 1114 int offset = -1;
aoqi@0 1115
aoqi@0 1116 switch (c->type()) {
aoqi@0 1117 case T_INT:
aoqi@0 1118 case T_FLOAT:
aoqi@0 1119 case T_ADDRESS: {
aoqi@0 1120 LIR_Opr tmp = FrameMap::O7_opr;
aoqi@0 1121 int value = c->as_jint_bits();
aoqi@0 1122 if (value == 0) {
aoqi@0 1123 tmp = FrameMap::G0_opr;
aoqi@0 1124 } else if (Assembler::is_simm13(value)) {
aoqi@0 1125 __ set(value, O7);
aoqi@0 1126 }
aoqi@0 1127 if (addr->index()->is_valid()) {
aoqi@0 1128 assert(addr->disp() == 0, "must be zero");
aoqi@0 1129 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
aoqi@0 1130 } else {
aoqi@0 1131 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
aoqi@0 1132 offset = store(tmp, base, addr->disp(), type, wide, false);
aoqi@0 1133 }
aoqi@0 1134 break;
aoqi@0 1135 }
aoqi@0 1136 case T_LONG:
aoqi@0 1137 case T_DOUBLE: {
aoqi@0 1138 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
aoqi@0 1139 assert(Assembler::is_simm13(addr->disp()) &&
aoqi@0 1140 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
aoqi@0 1141
aoqi@0 1142 LIR_Opr tmp = FrameMap::O7_opr;
aoqi@0 1143 int value_lo = c->as_jint_lo_bits();
aoqi@0 1144 if (value_lo == 0) {
aoqi@0 1145 tmp = FrameMap::G0_opr;
aoqi@0 1146 } else {
aoqi@0 1147 __ set(value_lo, O7);
aoqi@0 1148 }
aoqi@0 1149 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
aoqi@0 1150 int value_hi = c->as_jint_hi_bits();
aoqi@0 1151 if (value_hi == 0) {
aoqi@0 1152 tmp = FrameMap::G0_opr;
aoqi@0 1153 } else {
aoqi@0 1154 __ set(value_hi, O7);
aoqi@0 1155 }
aoqi@0 1156 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
aoqi@0 1157 break;
aoqi@0 1158 }
aoqi@0 1159 case T_OBJECT: {
aoqi@0 1160 jobject obj = c->as_jobject();
aoqi@0 1161 LIR_Opr tmp;
aoqi@0 1162 if (obj == NULL) {
aoqi@0 1163 tmp = FrameMap::G0_opr;
aoqi@0 1164 } else {
aoqi@0 1165 tmp = FrameMap::O7_opr;
aoqi@0 1166 jobject2reg(c->as_jobject(), O7);
aoqi@0 1167 }
aoqi@0 1168 // handle either reg+reg or reg+disp address
aoqi@0 1169 if (addr->index()->is_valid()) {
aoqi@0 1170 assert(addr->disp() == 0, "must be zero");
aoqi@0 1171 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
aoqi@0 1172 } else {
aoqi@0 1173 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
aoqi@0 1174 offset = store(tmp, base, addr->disp(), type, wide, false);
aoqi@0 1175 }
aoqi@0 1176
aoqi@0 1177 break;
aoqi@0 1178 }
aoqi@0 1179 default:
aoqi@0 1180 Unimplemented();
aoqi@0 1181 }
aoqi@0 1182 if (info != NULL) {
aoqi@0 1183 assert(offset != -1, "offset should've been set");
aoqi@0 1184 add_debug_info_for_null_check(offset, info);
aoqi@0 1185 }
aoqi@0 1186 }
aoqi@0 1187
aoqi@0 1188
aoqi@0 1189 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
aoqi@0 1190 LIR_Const* c = src->as_constant_ptr();
aoqi@0 1191 LIR_Opr to_reg = dest;
aoqi@0 1192
aoqi@0 1193 switch (c->type()) {
aoqi@0 1194 case T_INT:
aoqi@0 1195 case T_ADDRESS:
aoqi@0 1196 {
aoqi@0 1197 jint con = c->as_jint();
aoqi@0 1198 if (to_reg->is_single_cpu()) {
aoqi@0 1199 assert(patch_code == lir_patch_none, "no patching handled here");
aoqi@0 1200 __ set(con, to_reg->as_register());
aoqi@0 1201 } else {
aoqi@0 1202 ShouldNotReachHere();
aoqi@0 1203 assert(to_reg->is_single_fpu(), "wrong register kind");
aoqi@0 1204
aoqi@0 1205 __ set(con, O7);
aoqi@0 1206 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
aoqi@0 1207 __ st(O7, temp_slot);
aoqi@0 1208 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
aoqi@0 1209 }
aoqi@0 1210 }
aoqi@0 1211 break;
aoqi@0 1212
aoqi@0 1213 case T_LONG:
aoqi@0 1214 {
aoqi@0 1215 jlong con = c->as_jlong();
aoqi@0 1216
aoqi@0 1217 if (to_reg->is_double_cpu()) {
aoqi@0 1218 #ifdef _LP64
aoqi@0 1219 __ set(con, to_reg->as_register_lo());
aoqi@0 1220 #else
aoqi@0 1221 __ set(low(con), to_reg->as_register_lo());
aoqi@0 1222 __ set(high(con), to_reg->as_register_hi());
aoqi@0 1223 #endif
aoqi@0 1224 #ifdef _LP64
aoqi@0 1225 } else if (to_reg->is_single_cpu()) {
aoqi@0 1226 __ set(con, to_reg->as_register());
aoqi@0 1227 #endif
aoqi@0 1228 } else {
aoqi@0 1229 ShouldNotReachHere();
aoqi@0 1230 assert(to_reg->is_double_fpu(), "wrong register kind");
aoqi@0 1231 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
aoqi@0 1232 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
aoqi@0 1233 __ set(low(con), O7);
aoqi@0 1234 __ st(O7, temp_slot_lo);
aoqi@0 1235 __ set(high(con), O7);
aoqi@0 1236 __ st(O7, temp_slot_hi);
aoqi@0 1237 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
aoqi@0 1238 }
aoqi@0 1239 }
aoqi@0 1240 break;
aoqi@0 1241
aoqi@0 1242 case T_OBJECT:
aoqi@0 1243 {
aoqi@0 1244 if (patch_code == lir_patch_none) {
aoqi@0 1245 jobject2reg(c->as_jobject(), to_reg->as_register());
aoqi@0 1246 } else {
aoqi@0 1247 jobject2reg_with_patching(to_reg->as_register(), info);
aoqi@0 1248 }
aoqi@0 1249 }
aoqi@0 1250 break;
aoqi@0 1251
aoqi@0 1252 case T_METADATA:
aoqi@0 1253 {
aoqi@0 1254 if (patch_code == lir_patch_none) {
aoqi@0 1255 metadata2reg(c->as_metadata(), to_reg->as_register());
aoqi@0 1256 } else {
aoqi@0 1257 klass2reg_with_patching(to_reg->as_register(), info);
aoqi@0 1258 }
aoqi@0 1259 }
aoqi@0 1260 break;
aoqi@0 1261
aoqi@0 1262 case T_FLOAT:
aoqi@0 1263 {
aoqi@0 1264 address const_addr = __ float_constant(c->as_jfloat());
aoqi@0 1265 if (const_addr == NULL) {
aoqi@0 1266 bailout("const section overflow");
aoqi@0 1267 break;
aoqi@0 1268 }
aoqi@0 1269 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
aoqi@0 1270 AddressLiteral const_addrlit(const_addr, rspec);
aoqi@0 1271 if (to_reg->is_single_fpu()) {
aoqi@0 1272 __ patchable_sethi(const_addrlit, O7);
aoqi@0 1273 __ relocate(rspec);
aoqi@0 1274 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
aoqi@0 1275
aoqi@0 1276 } else {
aoqi@0 1277 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
aoqi@0 1278
aoqi@0 1279 __ set(const_addrlit, O7);
aoqi@0 1280 __ ld(O7, 0, to_reg->as_register());
aoqi@0 1281 }
aoqi@0 1282 }
aoqi@0 1283 break;
aoqi@0 1284
aoqi@0 1285 case T_DOUBLE:
aoqi@0 1286 {
aoqi@0 1287 address const_addr = __ double_constant(c->as_jdouble());
aoqi@0 1288 if (const_addr == NULL) {
aoqi@0 1289 bailout("const section overflow");
aoqi@0 1290 break;
aoqi@0 1291 }
aoqi@0 1292 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
aoqi@0 1293
aoqi@0 1294 if (to_reg->is_double_fpu()) {
aoqi@0 1295 AddressLiteral const_addrlit(const_addr, rspec);
aoqi@0 1296 __ patchable_sethi(const_addrlit, O7);
aoqi@0 1297 __ relocate(rspec);
aoqi@0 1298 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
aoqi@0 1299 } else {
aoqi@0 1300 assert(to_reg->is_double_cpu(), "Must be a long register.");
aoqi@0 1301 #ifdef _LP64
aoqi@0 1302 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
aoqi@0 1303 #else
aoqi@0 1304 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
aoqi@0 1305 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
aoqi@0 1306 #endif
aoqi@0 1307 }
aoqi@0 1308
aoqi@0 1309 }
aoqi@0 1310 break;
aoqi@0 1311
aoqi@0 1312 default:
aoqi@0 1313 ShouldNotReachHere();
aoqi@0 1314 }
aoqi@0 1315 }
aoqi@0 1316
aoqi@0 1317 Address LIR_Assembler::as_Address(LIR_Address* addr) {
aoqi@0 1318 Register reg = addr->base()->as_pointer_register();
aoqi@0 1319 LIR_Opr index = addr->index();
aoqi@0 1320 if (index->is_illegal()) {
aoqi@0 1321 return Address(reg, addr->disp());
aoqi@0 1322 } else {
aoqi@0 1323 assert (addr->disp() == 0, "unsupported address mode");
aoqi@0 1324 return Address(reg, index->as_pointer_register());
aoqi@0 1325 }
aoqi@0 1326 }
aoqi@0 1327
aoqi@0 1328
aoqi@0 1329 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
aoqi@0 1330 switch (type) {
aoqi@0 1331 case T_INT:
aoqi@0 1332 case T_FLOAT: {
aoqi@0 1333 Register tmp = O7;
aoqi@0 1334 Address from = frame_map()->address_for_slot(src->single_stack_ix());
aoqi@0 1335 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1336 __ lduw(from.base(), from.disp(), tmp);
aoqi@0 1337 __ stw(tmp, to.base(), to.disp());
aoqi@0 1338 break;
aoqi@0 1339 }
aoqi@0 1340 case T_OBJECT: {
aoqi@0 1341 Register tmp = O7;
aoqi@0 1342 Address from = frame_map()->address_for_slot(src->single_stack_ix());
aoqi@0 1343 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1344 __ ld_ptr(from.base(), from.disp(), tmp);
aoqi@0 1345 __ st_ptr(tmp, to.base(), to.disp());
aoqi@0 1346 break;
aoqi@0 1347 }
aoqi@0 1348 case T_LONG:
aoqi@0 1349 case T_DOUBLE: {
aoqi@0 1350 Register tmp = O7;
aoqi@0 1351 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
aoqi@0 1352 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
aoqi@0 1353 __ lduw(from.base(), from.disp(), tmp);
aoqi@0 1354 __ stw(tmp, to.base(), to.disp());
aoqi@0 1355 __ lduw(from.base(), from.disp() + 4, tmp);
aoqi@0 1356 __ stw(tmp, to.base(), to.disp() + 4);
aoqi@0 1357 break;
aoqi@0 1358 }
aoqi@0 1359
aoqi@0 1360 default:
aoqi@0 1361 ShouldNotReachHere();
aoqi@0 1362 }
aoqi@0 1363 }
aoqi@0 1364
aoqi@0 1365
aoqi@0 1366 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
aoqi@0 1367 Address base = as_Address(addr);
aoqi@0 1368 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
aoqi@0 1369 }
aoqi@0 1370
aoqi@0 1371
aoqi@0 1372 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
aoqi@0 1373 Address base = as_Address(addr);
aoqi@0 1374 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
aoqi@0 1375 }
aoqi@0 1376
aoqi@0 1377
aoqi@0 1378 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
aoqi@0 1379 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
aoqi@0 1380
aoqi@0 1381 assert(type != T_METADATA, "load of metadata ptr not supported");
aoqi@0 1382 LIR_Address* addr = src_opr->as_address_ptr();
aoqi@0 1383 LIR_Opr to_reg = dest;
aoqi@0 1384
aoqi@0 1385 Register src = addr->base()->as_pointer_register();
aoqi@0 1386 Register disp_reg = noreg;
aoqi@0 1387 int disp_value = addr->disp();
aoqi@0 1388 bool needs_patching = (patch_code != lir_patch_none);
aoqi@0 1389
aoqi@0 1390 if (addr->base()->type() == T_OBJECT) {
aoqi@0 1391 __ verify_oop(src);
aoqi@0 1392 }
aoqi@0 1393
aoqi@0 1394 PatchingStub* patch = NULL;
aoqi@0 1395 if (needs_patching) {
aoqi@0 1396 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
aoqi@0 1397 assert(!to_reg->is_double_cpu() ||
aoqi@0 1398 patch_code == lir_patch_none ||
aoqi@0 1399 patch_code == lir_patch_normal, "patching doesn't match register");
aoqi@0 1400 }
aoqi@0 1401
aoqi@0 1402 if (addr->index()->is_illegal()) {
aoqi@0 1403 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
aoqi@0 1404 if (needs_patching) {
aoqi@0 1405 __ patchable_set(0, O7);
aoqi@0 1406 } else {
aoqi@0 1407 __ set(disp_value, O7);
aoqi@0 1408 }
aoqi@0 1409 disp_reg = O7;
aoqi@0 1410 }
aoqi@0 1411 } else if (unaligned || PatchALot) {
aoqi@0 1412 __ add(src, addr->index()->as_register(), O7);
aoqi@0 1413 src = O7;
aoqi@0 1414 } else {
aoqi@0 1415 disp_reg = addr->index()->as_pointer_register();
aoqi@0 1416 assert(disp_value == 0, "can't handle 3 operand addresses");
aoqi@0 1417 }
aoqi@0 1418
aoqi@0 1419 // remember the offset of the load. The patching_epilog must be done
aoqi@0 1420 // before the call to add_debug_info, otherwise the PcDescs don't get
aoqi@0 1421 // entered in increasing order.
aoqi@0 1422 int offset = code_offset();
aoqi@0 1423
aoqi@0 1424 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
aoqi@0 1425 if (disp_reg == noreg) {
aoqi@0 1426 offset = load(src, disp_value, to_reg, type, wide, unaligned);
aoqi@0 1427 } else {
aoqi@0 1428 assert(!unaligned, "can't handle this");
aoqi@0 1429 offset = load(src, disp_reg, to_reg, type, wide);
aoqi@0 1430 }
aoqi@0 1431
aoqi@0 1432 if (patch != NULL) {
aoqi@0 1433 patching_epilog(patch, patch_code, src, info);
aoqi@0 1434 }
aoqi@0 1435 if (info != NULL) add_debug_info_for_null_check(offset, info);
aoqi@0 1436 }
aoqi@0 1437
aoqi@0 1438
aoqi@0 1439 void LIR_Assembler::prefetchr(LIR_Opr src) {
aoqi@0 1440 LIR_Address* addr = src->as_address_ptr();
aoqi@0 1441 Address from_addr = as_Address(addr);
aoqi@0 1442
aoqi@0 1443 if (VM_Version::has_v9()) {
aoqi@0 1444 __ prefetch(from_addr, Assembler::severalReads);
aoqi@0 1445 }
aoqi@0 1446 }
aoqi@0 1447
aoqi@0 1448
aoqi@0 1449 void LIR_Assembler::prefetchw(LIR_Opr src) {
aoqi@0 1450 LIR_Address* addr = src->as_address_ptr();
aoqi@0 1451 Address from_addr = as_Address(addr);
aoqi@0 1452
aoqi@0 1453 if (VM_Version::has_v9()) {
aoqi@0 1454 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
aoqi@0 1455 }
aoqi@0 1456 }
aoqi@0 1457
aoqi@0 1458
aoqi@0 1459 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
aoqi@0 1460 Address addr;
aoqi@0 1461 if (src->is_single_word()) {
aoqi@0 1462 addr = frame_map()->address_for_slot(src->single_stack_ix());
aoqi@0 1463 } else if (src->is_double_word()) {
aoqi@0 1464 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
aoqi@0 1465 }
aoqi@0 1466
aoqi@0 1467 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
aoqi@0 1468 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
aoqi@0 1469 }
aoqi@0 1470
aoqi@0 1471
aoqi@0 1472 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
aoqi@0 1473 Address addr;
aoqi@0 1474 if (dest->is_single_word()) {
aoqi@0 1475 addr = frame_map()->address_for_slot(dest->single_stack_ix());
aoqi@0 1476 } else if (dest->is_double_word()) {
aoqi@0 1477 addr = frame_map()->address_for_slot(dest->double_stack_ix());
aoqi@0 1478 }
aoqi@0 1479 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
aoqi@0 1480 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
aoqi@0 1481 }
aoqi@0 1482
aoqi@0 1483
aoqi@0 1484 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
aoqi@0 1485 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
aoqi@0 1486 if (from_reg->is_double_fpu()) {
aoqi@0 1487 // double to double moves
aoqi@0 1488 assert(to_reg->is_double_fpu(), "should match");
aoqi@0 1489 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
aoqi@0 1490 } else {
aoqi@0 1491 // float to float moves
aoqi@0 1492 assert(to_reg->is_single_fpu(), "should match");
aoqi@0 1493 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
aoqi@0 1494 }
aoqi@0 1495 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
aoqi@0 1496 if (from_reg->is_double_cpu()) {
aoqi@0 1497 #ifdef _LP64
aoqi@0 1498 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
aoqi@0 1499 #else
aoqi@0 1500 assert(to_reg->is_double_cpu() &&
aoqi@0 1501 from_reg->as_register_hi() != to_reg->as_register_lo() &&
aoqi@0 1502 from_reg->as_register_lo() != to_reg->as_register_hi(),
aoqi@0 1503 "should both be long and not overlap");
aoqi@0 1504 // long to long moves
aoqi@0 1505 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
aoqi@0 1506 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
aoqi@0 1507 #endif
aoqi@0 1508 #ifdef _LP64
aoqi@0 1509 } else if (to_reg->is_double_cpu()) {
aoqi@0 1510 // int to int moves
aoqi@0 1511 __ mov(from_reg->as_register(), to_reg->as_register_lo());
aoqi@0 1512 #endif
aoqi@0 1513 } else {
aoqi@0 1514 // int to int moves
aoqi@0 1515 __ mov(from_reg->as_register(), to_reg->as_register());
aoqi@0 1516 }
aoqi@0 1517 } else {
aoqi@0 1518 ShouldNotReachHere();
aoqi@0 1519 }
aoqi@0 1520 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
aoqi@0 1521 __ verify_oop(to_reg->as_register());
aoqi@0 1522 }
aoqi@0 1523 }
aoqi@0 1524
aoqi@0 1525
aoqi@0 1526 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
aoqi@0 1527 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
aoqi@0 1528 bool wide, bool unaligned) {
aoqi@0 1529 assert(type != T_METADATA, "store of metadata ptr not supported");
aoqi@0 1530 LIR_Address* addr = dest->as_address_ptr();
aoqi@0 1531
aoqi@0 1532 Register src = addr->base()->as_pointer_register();
aoqi@0 1533 Register disp_reg = noreg;
aoqi@0 1534 int disp_value = addr->disp();
aoqi@0 1535 bool needs_patching = (patch_code != lir_patch_none);
aoqi@0 1536
aoqi@0 1537 if (addr->base()->is_oop_register()) {
aoqi@0 1538 __ verify_oop(src);
aoqi@0 1539 }
aoqi@0 1540
aoqi@0 1541 PatchingStub* patch = NULL;
aoqi@0 1542 if (needs_patching) {
aoqi@0 1543 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
aoqi@0 1544 assert(!from_reg->is_double_cpu() ||
aoqi@0 1545 patch_code == lir_patch_none ||
aoqi@0 1546 patch_code == lir_patch_normal, "patching doesn't match register");
aoqi@0 1547 }
aoqi@0 1548
aoqi@0 1549 if (addr->index()->is_illegal()) {
aoqi@0 1550 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
aoqi@0 1551 if (needs_patching) {
aoqi@0 1552 __ patchable_set(0, O7);
aoqi@0 1553 } else {
aoqi@0 1554 __ set(disp_value, O7);
aoqi@0 1555 }
aoqi@0 1556 disp_reg = O7;
aoqi@0 1557 }
aoqi@0 1558 } else if (unaligned || PatchALot) {
aoqi@0 1559 __ add(src, addr->index()->as_register(), O7);
aoqi@0 1560 src = O7;
aoqi@0 1561 } else {
aoqi@0 1562 disp_reg = addr->index()->as_pointer_register();
aoqi@0 1563 assert(disp_value == 0, "can't handle 3 operand addresses");
aoqi@0 1564 }
aoqi@0 1565
aoqi@0 1566 // remember the offset of the store. The patching_epilog must be done
aoqi@0 1567 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
aoqi@0 1568 // entered in increasing order.
aoqi@0 1569 int offset;
aoqi@0 1570
aoqi@0 1571 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
aoqi@0 1572 if (disp_reg == noreg) {
aoqi@0 1573 offset = store(from_reg, src, disp_value, type, wide, unaligned);
aoqi@0 1574 } else {
aoqi@0 1575 assert(!unaligned, "can't handle this");
aoqi@0 1576 offset = store(from_reg, src, disp_reg, type, wide);
aoqi@0 1577 }
aoqi@0 1578
aoqi@0 1579 if (patch != NULL) {
aoqi@0 1580 patching_epilog(patch, patch_code, src, info);
aoqi@0 1581 }
aoqi@0 1582
aoqi@0 1583 if (info != NULL) add_debug_info_for_null_check(offset, info);
aoqi@0 1584 }
aoqi@0 1585
aoqi@0 1586
aoqi@0 1587 void LIR_Assembler::return_op(LIR_Opr result) {
aoqi@0 1588 // the poll may need a register so just pick one that isn't the return register
aoqi@0 1589 #if defined(TIERED) && !defined(_LP64)
aoqi@0 1590 if (result->type_field() == LIR_OprDesc::long_type) {
aoqi@0 1591 // Must move the result to G1
aoqi@0 1592 // Must leave proper result in O0,O1 and G1 (TIERED only)
aoqi@0 1593 __ sllx(I0, 32, G1); // Shift bits into high G1
aoqi@0 1594 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
aoqi@0 1595 __ or3 (I1, G1, G1); // OR 64 bits into G1
aoqi@0 1596 #ifdef ASSERT
aoqi@0 1597 // mangle it so any problems will show up
aoqi@0 1598 __ set(0xdeadbeef, I0);
aoqi@0 1599 __ set(0xdeadbeef, I1);
aoqi@0 1600 #endif
aoqi@0 1601 }
aoqi@0 1602 #endif // TIERED
aoqi@0 1603 __ set((intptr_t)os::get_polling_page(), L0);
aoqi@0 1604 __ relocate(relocInfo::poll_return_type);
aoqi@0 1605 __ ld_ptr(L0, 0, G0);
aoqi@0 1606 __ ret();
aoqi@0 1607 __ delayed()->restore();
aoqi@0 1608 }
aoqi@0 1609
aoqi@0 1610
aoqi@0 1611 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
aoqi@0 1612 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
aoqi@0 1613 if (info != NULL) {
aoqi@0 1614 add_debug_info_for_branch(info);
aoqi@0 1615 } else {
aoqi@0 1616 __ relocate(relocInfo::poll_type);
aoqi@0 1617 }
aoqi@0 1618
aoqi@0 1619 int offset = __ offset();
aoqi@0 1620 __ ld_ptr(tmp->as_register(), 0, G0);
aoqi@0 1621
aoqi@0 1622 return offset;
aoqi@0 1623 }
aoqi@0 1624
aoqi@0 1625
aoqi@0 1626 void LIR_Assembler::emit_static_call_stub() {
aoqi@0 1627 address call_pc = __ pc();
aoqi@0 1628 address stub = __ start_a_stub(call_stub_size);
aoqi@0 1629 if (stub == NULL) {
aoqi@0 1630 bailout("static call stub overflow");
aoqi@0 1631 return;
aoqi@0 1632 }
aoqi@0 1633
aoqi@0 1634 int start = __ offset();
aoqi@0 1635 __ relocate(static_stub_Relocation::spec(call_pc));
aoqi@0 1636
aoqi@0 1637 __ set_metadata(NULL, G5);
aoqi@0 1638 // must be set to -1 at code generation time
aoqi@0 1639 AddressLiteral addrlit(-1);
aoqi@0 1640 __ jump_to(addrlit, G3);
aoqi@0 1641 __ delayed()->nop();
aoqi@0 1642
aoqi@0 1643 assert(__ offset() - start <= call_stub_size, "stub too big");
aoqi@0 1644 __ end_a_stub();
aoqi@0 1645 }
aoqi@0 1646
aoqi@0 1647
aoqi@0 1648 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
aoqi@0 1649 if (opr1->is_single_fpu()) {
aoqi@0 1650 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
aoqi@0 1651 } else if (opr1->is_double_fpu()) {
aoqi@0 1652 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
aoqi@0 1653 } else if (opr1->is_single_cpu()) {
aoqi@0 1654 if (opr2->is_constant()) {
aoqi@0 1655 switch (opr2->as_constant_ptr()->type()) {
aoqi@0 1656 case T_INT:
aoqi@0 1657 { jint con = opr2->as_constant_ptr()->as_jint();
aoqi@0 1658 if (Assembler::is_simm13(con)) {
aoqi@0 1659 __ cmp(opr1->as_register(), con);
aoqi@0 1660 } else {
aoqi@0 1661 __ set(con, O7);
aoqi@0 1662 __ cmp(opr1->as_register(), O7);
aoqi@0 1663 }
aoqi@0 1664 }
aoqi@0 1665 break;
aoqi@0 1666
aoqi@0 1667 case T_OBJECT:
aoqi@0 1668 // there are only equal/notequal comparisions on objects
aoqi@0 1669 { jobject con = opr2->as_constant_ptr()->as_jobject();
aoqi@0 1670 if (con == NULL) {
aoqi@0 1671 __ cmp(opr1->as_register(), 0);
aoqi@0 1672 } else {
aoqi@0 1673 jobject2reg(con, O7);
aoqi@0 1674 __ cmp(opr1->as_register(), O7);
aoqi@0 1675 }
aoqi@0 1676 }
aoqi@0 1677 break;
aoqi@0 1678
aoqi@0 1679 default:
aoqi@0 1680 ShouldNotReachHere();
aoqi@0 1681 break;
aoqi@0 1682 }
aoqi@0 1683 } else {
aoqi@0 1684 if (opr2->is_address()) {
aoqi@0 1685 LIR_Address * addr = opr2->as_address_ptr();
aoqi@0 1686 BasicType type = addr->type();
aoqi@0 1687 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
aoqi@0 1688 else __ ld(as_Address(addr), O7);
aoqi@0 1689 __ cmp(opr1->as_register(), O7);
aoqi@0 1690 } else {
aoqi@0 1691 __ cmp(opr1->as_register(), opr2->as_register());
aoqi@0 1692 }
aoqi@0 1693 }
aoqi@0 1694 } else if (opr1->is_double_cpu()) {
aoqi@0 1695 Register xlo = opr1->as_register_lo();
aoqi@0 1696 Register xhi = opr1->as_register_hi();
aoqi@0 1697 if (opr2->is_constant() && opr2->as_jlong() == 0) {
aoqi@0 1698 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
aoqi@0 1699 #ifdef _LP64
aoqi@0 1700 __ orcc(xhi, G0, G0);
aoqi@0 1701 #else
aoqi@0 1702 __ orcc(xhi, xlo, G0);
aoqi@0 1703 #endif
aoqi@0 1704 } else if (opr2->is_register()) {
aoqi@0 1705 Register ylo = opr2->as_register_lo();
aoqi@0 1706 Register yhi = opr2->as_register_hi();
aoqi@0 1707 #ifdef _LP64
aoqi@0 1708 __ cmp(xlo, ylo);
aoqi@0 1709 #else
aoqi@0 1710 __ subcc(xlo, ylo, xlo);
aoqi@0 1711 __ subccc(xhi, yhi, xhi);
aoqi@0 1712 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
aoqi@0 1713 __ orcc(xhi, xlo, G0);
aoqi@0 1714 }
aoqi@0 1715 #endif
aoqi@0 1716 } else {
aoqi@0 1717 ShouldNotReachHere();
aoqi@0 1718 }
aoqi@0 1719 } else if (opr1->is_address()) {
aoqi@0 1720 LIR_Address * addr = opr1->as_address_ptr();
aoqi@0 1721 BasicType type = addr->type();
aoqi@0 1722 assert (opr2->is_constant(), "Checking");
aoqi@0 1723 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
aoqi@0 1724 else __ ld(as_Address(addr), O7);
aoqi@0 1725 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
aoqi@0 1726 } else {
aoqi@0 1727 ShouldNotReachHere();
aoqi@0 1728 }
aoqi@0 1729 }
aoqi@0 1730
aoqi@0 1731
aoqi@0 1732 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
aoqi@0 1733 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
aoqi@0 1734 bool is_unordered_less = (code == lir_ucmp_fd2i);
aoqi@0 1735 if (left->is_single_fpu()) {
aoqi@0 1736 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
aoqi@0 1737 } else if (left->is_double_fpu()) {
aoqi@0 1738 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
aoqi@0 1739 } else {
aoqi@0 1740 ShouldNotReachHere();
aoqi@0 1741 }
aoqi@0 1742 } else if (code == lir_cmp_l2i) {
aoqi@0 1743 #ifdef _LP64
aoqi@0 1744 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
aoqi@0 1745 #else
aoqi@0 1746 __ lcmp(left->as_register_hi(), left->as_register_lo(),
aoqi@0 1747 right->as_register_hi(), right->as_register_lo(),
aoqi@0 1748 dst->as_register());
aoqi@0 1749 #endif
aoqi@0 1750 } else {
aoqi@0 1751 ShouldNotReachHere();
aoqi@0 1752 }
aoqi@0 1753 }
aoqi@0 1754
aoqi@0 1755
aoqi@0 1756 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
aoqi@0 1757 Assembler::Condition acond;
aoqi@0 1758 switch (condition) {
aoqi@0 1759 case lir_cond_equal: acond = Assembler::equal; break;
aoqi@0 1760 case lir_cond_notEqual: acond = Assembler::notEqual; break;
aoqi@0 1761 case lir_cond_less: acond = Assembler::less; break;
aoqi@0 1762 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
aoqi@0 1763 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
aoqi@0 1764 case lir_cond_greater: acond = Assembler::greater; break;
aoqi@0 1765 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
aoqi@0 1766 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
aoqi@0 1767 default: ShouldNotReachHere();
aoqi@0 1768 };
aoqi@0 1769
aoqi@0 1770 if (opr1->is_constant() && opr1->type() == T_INT) {
aoqi@0 1771 Register dest = result->as_register();
aoqi@0 1772 // load up first part of constant before branch
aoqi@0 1773 // and do the rest in the delay slot.
aoqi@0 1774 if (!Assembler::is_simm13(opr1->as_jint())) {
aoqi@0 1775 __ sethi(opr1->as_jint(), dest);
aoqi@0 1776 }
aoqi@0 1777 } else if (opr1->is_constant()) {
aoqi@0 1778 const2reg(opr1, result, lir_patch_none, NULL);
aoqi@0 1779 } else if (opr1->is_register()) {
aoqi@0 1780 reg2reg(opr1, result);
aoqi@0 1781 } else if (opr1->is_stack()) {
aoqi@0 1782 stack2reg(opr1, result, result->type());
aoqi@0 1783 } else {
aoqi@0 1784 ShouldNotReachHere();
aoqi@0 1785 }
aoqi@0 1786 Label skip;
aoqi@0 1787 #ifdef _LP64
aoqi@0 1788 if (type == T_INT) {
aoqi@0 1789 __ br(acond, false, Assembler::pt, skip);
aoqi@0 1790 } else
aoqi@0 1791 #endif
aoqi@0 1792 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
aoqi@0 1793 if (opr1->is_constant() && opr1->type() == T_INT) {
aoqi@0 1794 Register dest = result->as_register();
aoqi@0 1795 if (Assembler::is_simm13(opr1->as_jint())) {
aoqi@0 1796 __ delayed()->or3(G0, opr1->as_jint(), dest);
aoqi@0 1797 } else {
aoqi@0 1798 // the sethi has been done above, so just put in the low 10 bits
aoqi@0 1799 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
aoqi@0 1800 }
aoqi@0 1801 } else {
aoqi@0 1802 // can't do anything useful in the delay slot
aoqi@0 1803 __ delayed()->nop();
aoqi@0 1804 }
aoqi@0 1805 if (opr2->is_constant()) {
aoqi@0 1806 const2reg(opr2, result, lir_patch_none, NULL);
aoqi@0 1807 } else if (opr2->is_register()) {
aoqi@0 1808 reg2reg(opr2, result);
aoqi@0 1809 } else if (opr2->is_stack()) {
aoqi@0 1810 stack2reg(opr2, result, result->type());
aoqi@0 1811 } else {
aoqi@0 1812 ShouldNotReachHere();
aoqi@0 1813 }
aoqi@0 1814 __ bind(skip);
aoqi@0 1815 }
aoqi@0 1816
aoqi@0 1817
aoqi@0 1818 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
aoqi@0 1819 assert(info == NULL, "unused on this code path");
aoqi@0 1820 assert(left->is_register(), "wrong items state");
aoqi@0 1821 assert(dest->is_register(), "wrong items state");
aoqi@0 1822
aoqi@0 1823 if (right->is_register()) {
aoqi@0 1824 if (dest->is_float_kind()) {
aoqi@0 1825
aoqi@0 1826 FloatRegister lreg, rreg, res;
aoqi@0 1827 FloatRegisterImpl::Width w;
aoqi@0 1828 if (right->is_single_fpu()) {
aoqi@0 1829 w = FloatRegisterImpl::S;
aoqi@0 1830 lreg = left->as_float_reg();
aoqi@0 1831 rreg = right->as_float_reg();
aoqi@0 1832 res = dest->as_float_reg();
aoqi@0 1833 } else {
aoqi@0 1834 w = FloatRegisterImpl::D;
aoqi@0 1835 lreg = left->as_double_reg();
aoqi@0 1836 rreg = right->as_double_reg();
aoqi@0 1837 res = dest->as_double_reg();
aoqi@0 1838 }
aoqi@0 1839
aoqi@0 1840 switch (code) {
aoqi@0 1841 case lir_add: __ fadd(w, lreg, rreg, res); break;
aoqi@0 1842 case lir_sub: __ fsub(w, lreg, rreg, res); break;
aoqi@0 1843 case lir_mul: // fall through
aoqi@0 1844 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
aoqi@0 1845 case lir_div: // fall through
aoqi@0 1846 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
aoqi@0 1847 default: ShouldNotReachHere();
aoqi@0 1848 }
aoqi@0 1849
aoqi@0 1850 } else if (dest->is_double_cpu()) {
aoqi@0 1851 #ifdef _LP64
aoqi@0 1852 Register dst_lo = dest->as_register_lo();
aoqi@0 1853 Register op1_lo = left->as_pointer_register();
aoqi@0 1854 Register op2_lo = right->as_pointer_register();
aoqi@0 1855
aoqi@0 1856 switch (code) {
aoqi@0 1857 case lir_add:
aoqi@0 1858 __ add(op1_lo, op2_lo, dst_lo);
aoqi@0 1859 break;
aoqi@0 1860
aoqi@0 1861 case lir_sub:
aoqi@0 1862 __ sub(op1_lo, op2_lo, dst_lo);
aoqi@0 1863 break;
aoqi@0 1864
aoqi@0 1865 default: ShouldNotReachHere();
aoqi@0 1866 }
aoqi@0 1867 #else
aoqi@0 1868 Register op1_lo = left->as_register_lo();
aoqi@0 1869 Register op1_hi = left->as_register_hi();
aoqi@0 1870 Register op2_lo = right->as_register_lo();
aoqi@0 1871 Register op2_hi = right->as_register_hi();
aoqi@0 1872 Register dst_lo = dest->as_register_lo();
aoqi@0 1873 Register dst_hi = dest->as_register_hi();
aoqi@0 1874
aoqi@0 1875 switch (code) {
aoqi@0 1876 case lir_add:
aoqi@0 1877 __ addcc(op1_lo, op2_lo, dst_lo);
aoqi@0 1878 __ addc (op1_hi, op2_hi, dst_hi);
aoqi@0 1879 break;
aoqi@0 1880
aoqi@0 1881 case lir_sub:
aoqi@0 1882 __ subcc(op1_lo, op2_lo, dst_lo);
aoqi@0 1883 __ subc (op1_hi, op2_hi, dst_hi);
aoqi@0 1884 break;
aoqi@0 1885
aoqi@0 1886 default: ShouldNotReachHere();
aoqi@0 1887 }
aoqi@0 1888 #endif
aoqi@0 1889 } else {
aoqi@0 1890 assert (right->is_single_cpu(), "Just Checking");
aoqi@0 1891
aoqi@0 1892 Register lreg = left->as_register();
aoqi@0 1893 Register res = dest->as_register();
aoqi@0 1894 Register rreg = right->as_register();
aoqi@0 1895 switch (code) {
aoqi@0 1896 case lir_add: __ add (lreg, rreg, res); break;
aoqi@0 1897 case lir_sub: __ sub (lreg, rreg, res); break;
aoqi@0 1898 case lir_mul: __ mulx (lreg, rreg, res); break;
aoqi@0 1899 default: ShouldNotReachHere();
aoqi@0 1900 }
aoqi@0 1901 }
aoqi@0 1902 } else {
aoqi@0 1903 assert (right->is_constant(), "must be constant");
aoqi@0 1904
aoqi@0 1905 if (dest->is_single_cpu()) {
aoqi@0 1906 Register lreg = left->as_register();
aoqi@0 1907 Register res = dest->as_register();
aoqi@0 1908 int simm13 = right->as_constant_ptr()->as_jint();
aoqi@0 1909
aoqi@0 1910 switch (code) {
aoqi@0 1911 case lir_add: __ add (lreg, simm13, res); break;
aoqi@0 1912 case lir_sub: __ sub (lreg, simm13, res); break;
aoqi@0 1913 case lir_mul: __ mulx (lreg, simm13, res); break;
aoqi@0 1914 default: ShouldNotReachHere();
aoqi@0 1915 }
aoqi@0 1916 } else {
aoqi@0 1917 Register lreg = left->as_pointer_register();
aoqi@0 1918 Register res = dest->as_register_lo();
aoqi@0 1919 long con = right->as_constant_ptr()->as_jlong();
aoqi@0 1920 assert(Assembler::is_simm13(con), "must be simm13");
aoqi@0 1921
aoqi@0 1922 switch (code) {
aoqi@0 1923 case lir_add: __ add (lreg, (int)con, res); break;
aoqi@0 1924 case lir_sub: __ sub (lreg, (int)con, res); break;
aoqi@0 1925 case lir_mul: __ mulx (lreg, (int)con, res); break;
aoqi@0 1926 default: ShouldNotReachHere();
aoqi@0 1927 }
aoqi@0 1928 }
aoqi@0 1929 }
aoqi@0 1930 }
aoqi@0 1931
aoqi@0 1932
aoqi@0 1933 void LIR_Assembler::fpop() {
aoqi@0 1934 // do nothing
aoqi@0 1935 }
aoqi@0 1936
aoqi@0 1937
aoqi@0 1938 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
aoqi@0 1939 switch (code) {
aoqi@0 1940 case lir_sin:
aoqi@0 1941 case lir_tan:
aoqi@0 1942 case lir_cos: {
aoqi@0 1943 assert(thread->is_valid(), "preserve the thread object for performance reasons");
aoqi@0 1944 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
aoqi@0 1945 break;
aoqi@0 1946 }
aoqi@0 1947 case lir_sqrt: {
aoqi@0 1948 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
aoqi@0 1949 FloatRegister src_reg = value->as_double_reg();
aoqi@0 1950 FloatRegister dst_reg = dest->as_double_reg();
aoqi@0 1951 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
aoqi@0 1952 break;
aoqi@0 1953 }
aoqi@0 1954 case lir_abs: {
aoqi@0 1955 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
aoqi@0 1956 FloatRegister src_reg = value->as_double_reg();
aoqi@0 1957 FloatRegister dst_reg = dest->as_double_reg();
aoqi@0 1958 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
aoqi@0 1959 break;
aoqi@0 1960 }
aoqi@0 1961 default: {
aoqi@0 1962 ShouldNotReachHere();
aoqi@0 1963 break;
aoqi@0 1964 }
aoqi@0 1965 }
aoqi@0 1966 }
aoqi@0 1967
aoqi@0 1968
aoqi@0 1969 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
aoqi@0 1970 if (right->is_constant()) {
aoqi@0 1971 if (dest->is_single_cpu()) {
aoqi@0 1972 int simm13 = right->as_constant_ptr()->as_jint();
aoqi@0 1973 switch (code) {
aoqi@0 1974 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
aoqi@0 1975 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
aoqi@0 1976 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
aoqi@0 1977 default: ShouldNotReachHere();
aoqi@0 1978 }
aoqi@0 1979 } else {
aoqi@0 1980 long c = right->as_constant_ptr()->as_jlong();
aoqi@0 1981 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
aoqi@0 1982 int simm13 = (int)c;
aoqi@0 1983 switch (code) {
aoqi@0 1984 case lir_logic_and:
aoqi@0 1985 #ifndef _LP64
aoqi@0 1986 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
aoqi@0 1987 #endif
aoqi@0 1988 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
aoqi@0 1989 break;
aoqi@0 1990
aoqi@0 1991 case lir_logic_or:
aoqi@0 1992 #ifndef _LP64
aoqi@0 1993 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
aoqi@0 1994 #endif
aoqi@0 1995 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
aoqi@0 1996 break;
aoqi@0 1997
aoqi@0 1998 case lir_logic_xor:
aoqi@0 1999 #ifndef _LP64
aoqi@0 2000 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
aoqi@0 2001 #endif
aoqi@0 2002 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
aoqi@0 2003 break;
aoqi@0 2004
aoqi@0 2005 default: ShouldNotReachHere();
aoqi@0 2006 }
aoqi@0 2007 }
aoqi@0 2008 } else {
aoqi@0 2009 assert(right->is_register(), "right should be in register");
aoqi@0 2010
aoqi@0 2011 if (dest->is_single_cpu()) {
aoqi@0 2012 switch (code) {
aoqi@0 2013 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
aoqi@0 2014 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
aoqi@0 2015 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
aoqi@0 2016 default: ShouldNotReachHere();
aoqi@0 2017 }
aoqi@0 2018 } else {
aoqi@0 2019 #ifdef _LP64
aoqi@0 2020 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
aoqi@0 2021 left->as_register_lo();
aoqi@0 2022 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
aoqi@0 2023 right->as_register_lo();
aoqi@0 2024
aoqi@0 2025 switch (code) {
aoqi@0 2026 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
aoqi@0 2027 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
aoqi@0 2028 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
aoqi@0 2029 default: ShouldNotReachHere();
aoqi@0 2030 }
aoqi@0 2031 #else
aoqi@0 2032 switch (code) {
aoqi@0 2033 case lir_logic_and:
aoqi@0 2034 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
aoqi@0 2035 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
aoqi@0 2036 break;
aoqi@0 2037
aoqi@0 2038 case lir_logic_or:
aoqi@0 2039 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
aoqi@0 2040 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
aoqi@0 2041 break;
aoqi@0 2042
aoqi@0 2043 case lir_logic_xor:
aoqi@0 2044 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
aoqi@0 2045 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
aoqi@0 2046 break;
aoqi@0 2047
aoqi@0 2048 default: ShouldNotReachHere();
aoqi@0 2049 }
aoqi@0 2050 #endif
aoqi@0 2051 }
aoqi@0 2052 }
aoqi@0 2053 }
aoqi@0 2054
aoqi@0 2055
aoqi@0 2056 int LIR_Assembler::shift_amount(BasicType t) {
aoqi@0 2057 int elem_size = type2aelembytes(t);
aoqi@0 2058 switch (elem_size) {
aoqi@0 2059 case 1 : return 0;
aoqi@0 2060 case 2 : return 1;
aoqi@0 2061 case 4 : return 2;
aoqi@0 2062 case 8 : return 3;
aoqi@0 2063 }
aoqi@0 2064 ShouldNotReachHere();
aoqi@0 2065 return -1;
aoqi@0 2066 }
aoqi@0 2067
aoqi@0 2068
aoqi@0 2069 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
aoqi@0 2070 assert(exceptionOop->as_register() == Oexception, "should match");
aoqi@0 2071 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
aoqi@0 2072
aoqi@0 2073 info->add_register_oop(exceptionOop);
aoqi@0 2074
aoqi@0 2075 // reuse the debug info from the safepoint poll for the throw op itself
aoqi@0 2076 address pc_for_athrow = __ pc();
aoqi@0 2077 int pc_for_athrow_offset = __ offset();
aoqi@0 2078 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
aoqi@0 2079 __ set(pc_for_athrow, Oissuing_pc, rspec);
aoqi@0 2080 add_call_info(pc_for_athrow_offset, info); // for exception handler
aoqi@0 2081
aoqi@0 2082 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
aoqi@0 2083 __ delayed()->nop();
aoqi@0 2084 }
aoqi@0 2085
aoqi@0 2086
aoqi@0 2087 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
aoqi@0 2088 assert(exceptionOop->as_register() == Oexception, "should match");
aoqi@0 2089
aoqi@0 2090 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
aoqi@0 2091 __ delayed()->nop();
aoqi@0 2092 }
aoqi@0 2093
aoqi@0 2094 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
aoqi@0 2095 Register src = op->src()->as_register();
aoqi@0 2096 Register dst = op->dst()->as_register();
aoqi@0 2097 Register src_pos = op->src_pos()->as_register();
aoqi@0 2098 Register dst_pos = op->dst_pos()->as_register();
aoqi@0 2099 Register length = op->length()->as_register();
aoqi@0 2100 Register tmp = op->tmp()->as_register();
aoqi@0 2101 Register tmp2 = O7;
aoqi@0 2102
aoqi@0 2103 int flags = op->flags();
aoqi@0 2104 ciArrayKlass* default_type = op->expected_type();
aoqi@0 2105 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
aoqi@0 2106 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
aoqi@0 2107
aoqi@0 2108 #ifdef _LP64
aoqi@0 2109 // higher 32bits must be null
aoqi@0 2110 __ sra(dst_pos, 0, dst_pos);
aoqi@0 2111 __ sra(src_pos, 0, src_pos);
aoqi@0 2112 __ sra(length, 0, length);
aoqi@0 2113 #endif
aoqi@0 2114
aoqi@0 2115 // set up the arraycopy stub information
aoqi@0 2116 ArrayCopyStub* stub = op->stub();
aoqi@0 2117
aoqi@0 2118 // always do stub if no type information is available. it's ok if
aoqi@0 2119 // the known type isn't loaded since the code sanity checks
aoqi@0 2120 // in debug mode and the type isn't required when we know the exact type
aoqi@0 2121 // also check that the type is an array type.
aoqi@0 2122 if (op->expected_type() == NULL) {
aoqi@0 2123 __ mov(src, O0);
aoqi@0 2124 __ mov(src_pos, O1);
aoqi@0 2125 __ mov(dst, O2);
aoqi@0 2126 __ mov(dst_pos, O3);
aoqi@0 2127 __ mov(length, O4);
aoqi@0 2128 address copyfunc_addr = StubRoutines::generic_arraycopy();
aoqi@0 2129
aoqi@0 2130 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
aoqi@0 2131 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
aoqi@0 2132 } else {
aoqi@0 2133 #ifndef PRODUCT
aoqi@0 2134 if (PrintC1Statistics) {
aoqi@0 2135 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
aoqi@0 2136 __ inc_counter(counter, G1, G3);
aoqi@0 2137 }
aoqi@0 2138 #endif
aoqi@0 2139 __ call_VM_leaf(tmp, copyfunc_addr);
aoqi@0 2140 }
aoqi@0 2141
aoqi@0 2142 if (copyfunc_addr != NULL) {
aoqi@0 2143 __ xor3(O0, -1, tmp);
aoqi@0 2144 __ sub(length, tmp, length);
aoqi@0 2145 __ add(src_pos, tmp, src_pos);
aoqi@0 2146 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
aoqi@0 2147 __ delayed()->add(dst_pos, tmp, dst_pos);
aoqi@0 2148 } else {
aoqi@0 2149 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
aoqi@0 2150 __ delayed()->nop();
aoqi@0 2151 }
aoqi@0 2152 __ bind(*stub->continuation());
aoqi@0 2153 return;
aoqi@0 2154 }
aoqi@0 2155
aoqi@0 2156 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
aoqi@0 2157
aoqi@0 2158 // make sure src and dst are non-null and load array length
aoqi@0 2159 if (flags & LIR_OpArrayCopy::src_null_check) {
aoqi@0 2160 __ tst(src);
aoqi@0 2161 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
aoqi@0 2162 __ delayed()->nop();
aoqi@0 2163 }
aoqi@0 2164
aoqi@0 2165 if (flags & LIR_OpArrayCopy::dst_null_check) {
aoqi@0 2166 __ tst(dst);
aoqi@0 2167 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
aoqi@0 2168 __ delayed()->nop();
aoqi@0 2169 }
aoqi@0 2170
zmajo@8563 2171 // If the compiler was not able to prove that exact type of the source or the destination
zmajo@8563 2172 // of the arraycopy is an array type, check at runtime if the source or the destination is
zmajo@8563 2173 // an instance type.
zmajo@8563 2174 if (flags & LIR_OpArrayCopy::type_check) {
zmajo@8563 2175 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
zmajo@8563 2176 __ load_klass(dst, tmp);
zmajo@8563 2177 __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
zmajo@8563 2178 __ cmp(tmp2, Klass::_lh_neutral_value);
zmajo@8563 2179 __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
zmajo@8563 2180 __ delayed()->nop();
zmajo@8563 2181 }
zmajo@8563 2182
zmajo@8563 2183 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
zmajo@8563 2184 __ load_klass(src, tmp);
zmajo@8563 2185 __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
zmajo@8563 2186 __ cmp(tmp2, Klass::_lh_neutral_value);
zmajo@8563 2187 __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
zmajo@8563 2188 __ delayed()->nop();
zmajo@8563 2189 }
zmajo@8563 2190 }
zmajo@8563 2191
aoqi@0 2192 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
aoqi@0 2193 // test src_pos register
aoqi@0 2194 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
aoqi@0 2195 __ delayed()->nop();
aoqi@0 2196 }
aoqi@0 2197
aoqi@0 2198 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
aoqi@0 2199 // test dst_pos register
aoqi@0 2200 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
aoqi@0 2201 __ delayed()->nop();
aoqi@0 2202 }
aoqi@0 2203
aoqi@0 2204 if (flags & LIR_OpArrayCopy::length_positive_check) {
aoqi@0 2205 // make sure length isn't negative
aoqi@0 2206 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
aoqi@0 2207 __ delayed()->nop();
aoqi@0 2208 }
aoqi@0 2209
aoqi@0 2210 if (flags & LIR_OpArrayCopy::src_range_check) {
aoqi@0 2211 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
aoqi@0 2212 __ add(length, src_pos, tmp);
aoqi@0 2213 __ cmp(tmp2, tmp);
aoqi@0 2214 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
aoqi@0 2215 __ delayed()->nop();
aoqi@0 2216 }
aoqi@0 2217
aoqi@0 2218 if (flags & LIR_OpArrayCopy::dst_range_check) {
aoqi@0 2219 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
aoqi@0 2220 __ add(length, dst_pos, tmp);
aoqi@0 2221 __ cmp(tmp2, tmp);
aoqi@0 2222 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
aoqi@0 2223 __ delayed()->nop();
aoqi@0 2224 }
aoqi@0 2225
aoqi@0 2226 int shift = shift_amount(basic_type);
aoqi@0 2227
aoqi@0 2228 if (flags & LIR_OpArrayCopy::type_check) {
aoqi@0 2229 // We don't know the array types are compatible
aoqi@0 2230 if (basic_type != T_OBJECT) {
aoqi@0 2231 // Simple test for basic type arrays
aoqi@0 2232 if (UseCompressedClassPointers) {
aoqi@0 2233 // We don't need decode because we just need to compare
aoqi@0 2234 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
aoqi@0 2235 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2236 __ cmp(tmp, tmp2);
aoqi@0 2237 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
aoqi@0 2238 } else {
aoqi@0 2239 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
aoqi@0 2240 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2241 __ cmp(tmp, tmp2);
aoqi@0 2242 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
aoqi@0 2243 }
aoqi@0 2244 __ delayed()->nop();
aoqi@0 2245 } else {
aoqi@0 2246 // For object arrays, if src is a sub class of dst then we can
aoqi@0 2247 // safely do the copy.
aoqi@0 2248 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
aoqi@0 2249
aoqi@0 2250 Label cont, slow;
aoqi@0 2251 assert_different_registers(tmp, tmp2, G3, G1);
aoqi@0 2252
aoqi@0 2253 __ load_klass(src, G3);
aoqi@0 2254 __ load_klass(dst, G1);
aoqi@0 2255
aoqi@0 2256 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
aoqi@0 2257
aoqi@0 2258 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
aoqi@0 2259 __ delayed()->nop();
aoqi@0 2260
aoqi@0 2261 __ cmp(G3, 0);
aoqi@0 2262 if (copyfunc_addr != NULL) { // use stub if available
aoqi@0 2263 // src is not a sub class of dst so we have to do a
aoqi@0 2264 // per-element check.
aoqi@0 2265 __ br(Assembler::notEqual, false, Assembler::pt, cont);
aoqi@0 2266 __ delayed()->nop();
aoqi@0 2267
aoqi@0 2268 __ bind(slow);
aoqi@0 2269
aoqi@0 2270 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
aoqi@0 2271 if ((flags & mask) != mask) {
aoqi@0 2272 // Check that at least both of them object arrays.
aoqi@0 2273 assert(flags & mask, "one of the two should be known to be an object array");
aoqi@0 2274
aoqi@0 2275 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
aoqi@0 2276 __ load_klass(src, tmp);
aoqi@0 2277 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
aoqi@0 2278 __ load_klass(dst, tmp);
aoqi@0 2279 }
aoqi@0 2280 int lh_offset = in_bytes(Klass::layout_helper_offset());
aoqi@0 2281
aoqi@0 2282 __ lduw(tmp, lh_offset, tmp2);
aoqi@0 2283
aoqi@0 2284 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
aoqi@0 2285 __ set(objArray_lh, tmp);
aoqi@0 2286 __ cmp(tmp, tmp2);
aoqi@0 2287 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
aoqi@0 2288 __ delayed()->nop();
aoqi@0 2289 }
aoqi@0 2290
aoqi@0 2291 Register src_ptr = O0;
aoqi@0 2292 Register dst_ptr = O1;
aoqi@0 2293 Register len = O2;
aoqi@0 2294 Register chk_off = O3;
aoqi@0 2295 Register super_k = O4;
aoqi@0 2296
aoqi@0 2297 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
aoqi@0 2298 if (shift == 0) {
aoqi@0 2299 __ add(src_ptr, src_pos, src_ptr);
aoqi@0 2300 } else {
aoqi@0 2301 __ sll(src_pos, shift, tmp);
aoqi@0 2302 __ add(src_ptr, tmp, src_ptr);
aoqi@0 2303 }
aoqi@0 2304
aoqi@0 2305 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
aoqi@0 2306 if (shift == 0) {
aoqi@0 2307 __ add(dst_ptr, dst_pos, dst_ptr);
aoqi@0 2308 } else {
aoqi@0 2309 __ sll(dst_pos, shift, tmp);
aoqi@0 2310 __ add(dst_ptr, tmp, dst_ptr);
aoqi@0 2311 }
aoqi@0 2312 __ mov(length, len);
aoqi@0 2313 __ load_klass(dst, tmp);
aoqi@0 2314
aoqi@0 2315 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
aoqi@0 2316 __ ld_ptr(tmp, ek_offset, super_k);
aoqi@0 2317
aoqi@0 2318 int sco_offset = in_bytes(Klass::super_check_offset_offset());
aoqi@0 2319 __ lduw(super_k, sco_offset, chk_off);
aoqi@0 2320
aoqi@0 2321 __ call_VM_leaf(tmp, copyfunc_addr);
aoqi@0 2322
aoqi@0 2323 #ifndef PRODUCT
aoqi@0 2324 if (PrintC1Statistics) {
aoqi@0 2325 Label failed;
aoqi@0 2326 __ br_notnull_short(O0, Assembler::pn, failed);
aoqi@0 2327 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
aoqi@0 2328 __ bind(failed);
aoqi@0 2329 }
aoqi@0 2330 #endif
aoqi@0 2331
aoqi@0 2332 __ br_null(O0, false, Assembler::pt, *stub->continuation());
aoqi@0 2333 __ delayed()->xor3(O0, -1, tmp);
aoqi@0 2334
aoqi@0 2335 #ifndef PRODUCT
aoqi@0 2336 if (PrintC1Statistics) {
aoqi@0 2337 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
aoqi@0 2338 }
aoqi@0 2339 #endif
aoqi@0 2340
aoqi@0 2341 __ sub(length, tmp, length);
aoqi@0 2342 __ add(src_pos, tmp, src_pos);
aoqi@0 2343 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
aoqi@0 2344 __ delayed()->add(dst_pos, tmp, dst_pos);
aoqi@0 2345
aoqi@0 2346 __ bind(cont);
aoqi@0 2347 } else {
aoqi@0 2348 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
aoqi@0 2349 __ delayed()->nop();
aoqi@0 2350 __ bind(cont);
aoqi@0 2351 }
aoqi@0 2352 }
aoqi@0 2353 }
aoqi@0 2354
aoqi@0 2355 #ifdef ASSERT
aoqi@0 2356 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
aoqi@0 2357 // Sanity check the known type with the incoming class. For the
aoqi@0 2358 // primitive case the types must match exactly with src.klass and
aoqi@0 2359 // dst.klass each exactly matching the default type. For the
aoqi@0 2360 // object array case, if no type check is needed then either the
aoqi@0 2361 // dst type is exactly the expected type and the src type is a
aoqi@0 2362 // subtype which we can't check or src is the same array as dst
aoqi@0 2363 // but not necessarily exactly of type default_type.
aoqi@0 2364 Label known_ok, halt;
aoqi@0 2365 metadata2reg(op->expected_type()->constant_encoding(), tmp);
aoqi@0 2366 if (UseCompressedClassPointers) {
aoqi@0 2367 // tmp holds the default type. It currently comes uncompressed after the
aoqi@0 2368 // load of a constant, so encode it.
aoqi@0 2369 __ encode_klass_not_null(tmp);
aoqi@0 2370 // load the raw value of the dst klass, since we will be comparing
aoqi@0 2371 // uncompressed values directly.
aoqi@0 2372 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2373 if (basic_type != T_OBJECT) {
aoqi@0 2374 __ cmp(tmp, tmp2);
aoqi@0 2375 __ br(Assembler::notEqual, false, Assembler::pn, halt);
aoqi@0 2376 // load the raw value of the src klass.
aoqi@0 2377 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2378 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
aoqi@0 2379 } else {
aoqi@0 2380 __ cmp(tmp, tmp2);
aoqi@0 2381 __ br(Assembler::equal, false, Assembler::pn, known_ok);
aoqi@0 2382 __ delayed()->cmp(src, dst);
aoqi@0 2383 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
aoqi@0 2384 __ delayed()->nop();
aoqi@0 2385 }
aoqi@0 2386 } else {
aoqi@0 2387 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2388 if (basic_type != T_OBJECT) {
aoqi@0 2389 __ cmp(tmp, tmp2);
aoqi@0 2390 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
aoqi@0 2391 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
aoqi@0 2392 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
aoqi@0 2393 } else {
aoqi@0 2394 __ cmp(tmp, tmp2);
aoqi@0 2395 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
aoqi@0 2396 __ delayed()->cmp(src, dst);
aoqi@0 2397 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
aoqi@0 2398 __ delayed()->nop();
aoqi@0 2399 }
aoqi@0 2400 }
aoqi@0 2401 __ bind(halt);
aoqi@0 2402 __ stop("incorrect type information in arraycopy");
aoqi@0 2403 __ bind(known_ok);
aoqi@0 2404 }
aoqi@0 2405 #endif
aoqi@0 2406
aoqi@0 2407 #ifndef PRODUCT
aoqi@0 2408 if (PrintC1Statistics) {
aoqi@0 2409 address counter = Runtime1::arraycopy_count_address(basic_type);
aoqi@0 2410 __ inc_counter(counter, G1, G3);
aoqi@0 2411 }
aoqi@0 2412 #endif
aoqi@0 2413
aoqi@0 2414 Register src_ptr = O0;
aoqi@0 2415 Register dst_ptr = O1;
aoqi@0 2416 Register len = O2;
aoqi@0 2417
aoqi@0 2418 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
aoqi@0 2419 if (shift == 0) {
aoqi@0 2420 __ add(src_ptr, src_pos, src_ptr);
aoqi@0 2421 } else {
aoqi@0 2422 __ sll(src_pos, shift, tmp);
aoqi@0 2423 __ add(src_ptr, tmp, src_ptr);
aoqi@0 2424 }
aoqi@0 2425
aoqi@0 2426 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
aoqi@0 2427 if (shift == 0) {
aoqi@0 2428 __ add(dst_ptr, dst_pos, dst_ptr);
aoqi@0 2429 } else {
aoqi@0 2430 __ sll(dst_pos, shift, tmp);
aoqi@0 2431 __ add(dst_ptr, tmp, dst_ptr);
aoqi@0 2432 }
aoqi@0 2433
aoqi@0 2434 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
aoqi@0 2435 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
aoqi@0 2436 const char *name;
aoqi@0 2437 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
aoqi@0 2438
aoqi@0 2439 // arraycopy stubs takes a length in number of elements, so don't scale it.
aoqi@0 2440 __ mov(length, len);
aoqi@0 2441 __ call_VM_leaf(tmp, entry);
aoqi@0 2442
aoqi@0 2443 __ bind(*stub->continuation());
aoqi@0 2444 }
aoqi@0 2445
aoqi@0 2446
aoqi@0 2447 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
aoqi@0 2448 if (dest->is_single_cpu()) {
aoqi@0 2449 #ifdef _LP64
aoqi@0 2450 if (left->type() == T_OBJECT) {
aoqi@0 2451 switch (code) {
aoqi@0 2452 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2453 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2454 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2455 default: ShouldNotReachHere();
aoqi@0 2456 }
aoqi@0 2457 } else
aoqi@0 2458 #endif
aoqi@0 2459 switch (code) {
aoqi@0 2460 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2461 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2462 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
aoqi@0 2463 default: ShouldNotReachHere();
aoqi@0 2464 }
aoqi@0 2465 } else {
aoqi@0 2466 #ifdef _LP64
aoqi@0 2467 switch (code) {
aoqi@0 2468 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
aoqi@0 2469 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
aoqi@0 2470 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
aoqi@0 2471 default: ShouldNotReachHere();
aoqi@0 2472 }
aoqi@0 2473 #else
aoqi@0 2474 switch (code) {
aoqi@0 2475 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
aoqi@0 2476 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
aoqi@0 2477 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
aoqi@0 2478 default: ShouldNotReachHere();
aoqi@0 2479 }
aoqi@0 2480 #endif
aoqi@0 2481 }
aoqi@0 2482 }
aoqi@0 2483
aoqi@0 2484
aoqi@0 2485 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
aoqi@0 2486 #ifdef _LP64
aoqi@0 2487 if (left->type() == T_OBJECT) {
aoqi@0 2488 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
aoqi@0 2489 Register l = left->as_register();
aoqi@0 2490 Register d = dest->as_register_lo();
aoqi@0 2491 switch (code) {
aoqi@0 2492 case lir_shl: __ sllx (l, count, d); break;
aoqi@0 2493 case lir_shr: __ srax (l, count, d); break;
aoqi@0 2494 case lir_ushr: __ srlx (l, count, d); break;
aoqi@0 2495 default: ShouldNotReachHere();
aoqi@0 2496 }
aoqi@0 2497 return;
aoqi@0 2498 }
aoqi@0 2499 #endif
aoqi@0 2500
aoqi@0 2501 if (dest->is_single_cpu()) {
aoqi@0 2502 count = count & 0x1F; // Java spec
aoqi@0 2503 switch (code) {
aoqi@0 2504 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
aoqi@0 2505 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
aoqi@0 2506 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
aoqi@0 2507 default: ShouldNotReachHere();
aoqi@0 2508 }
aoqi@0 2509 } else if (dest->is_double_cpu()) {
aoqi@0 2510 count = count & 63; // Java spec
aoqi@0 2511 switch (code) {
aoqi@0 2512 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
aoqi@0 2513 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
aoqi@0 2514 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
aoqi@0 2515 default: ShouldNotReachHere();
aoqi@0 2516 }
aoqi@0 2517 } else {
aoqi@0 2518 ShouldNotReachHere();
aoqi@0 2519 }
aoqi@0 2520 }
aoqi@0 2521
aoqi@0 2522
aoqi@0 2523 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
aoqi@0 2524 assert(op->tmp1()->as_register() == G1 &&
aoqi@0 2525 op->tmp2()->as_register() == G3 &&
aoqi@0 2526 op->tmp3()->as_register() == G4 &&
aoqi@0 2527 op->obj()->as_register() == O0 &&
aoqi@0 2528 op->klass()->as_register() == G5, "must be");
aoqi@0 2529 if (op->init_check()) {
aoqi@0 2530 __ ldub(op->klass()->as_register(),
aoqi@0 2531 in_bytes(InstanceKlass::init_state_offset()),
aoqi@0 2532 op->tmp1()->as_register());
aoqi@0 2533 add_debug_info_for_null_check_here(op->stub()->info());
aoqi@0 2534 __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
aoqi@0 2535 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
aoqi@0 2536 __ delayed()->nop();
aoqi@0 2537 }
aoqi@0 2538 __ allocate_object(op->obj()->as_register(),
aoqi@0 2539 op->tmp1()->as_register(),
aoqi@0 2540 op->tmp2()->as_register(),
aoqi@0 2541 op->tmp3()->as_register(),
aoqi@0 2542 op->header_size(),
aoqi@0 2543 op->object_size(),
aoqi@0 2544 op->klass()->as_register(),
aoqi@0 2545 *op->stub()->entry());
aoqi@0 2546 __ bind(*op->stub()->continuation());
aoqi@0 2547 __ verify_oop(op->obj()->as_register());
aoqi@0 2548 }
aoqi@0 2549
aoqi@0 2550
aoqi@0 2551 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
aoqi@0 2552 assert(op->tmp1()->as_register() == G1 &&
aoqi@0 2553 op->tmp2()->as_register() == G3 &&
aoqi@0 2554 op->tmp3()->as_register() == G4 &&
aoqi@0 2555 op->tmp4()->as_register() == O1 &&
aoqi@0 2556 op->klass()->as_register() == G5, "must be");
aoqi@0 2557
aoqi@0 2558 LP64_ONLY( __ signx(op->len()->as_register()); )
aoqi@0 2559 if (UseSlowPath ||
aoqi@0 2560 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
aoqi@0 2561 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
aoqi@0 2562 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
aoqi@0 2563 __ delayed()->nop();
aoqi@0 2564 } else {
aoqi@0 2565 __ allocate_array(op->obj()->as_register(),
aoqi@0 2566 op->len()->as_register(),
aoqi@0 2567 op->tmp1()->as_register(),
aoqi@0 2568 op->tmp2()->as_register(),
aoqi@0 2569 op->tmp3()->as_register(),
aoqi@0 2570 arrayOopDesc::header_size(op->type()),
aoqi@0 2571 type2aelembytes(op->type()),
aoqi@0 2572 op->klass()->as_register(),
aoqi@0 2573 *op->stub()->entry());
aoqi@0 2574 }
aoqi@0 2575 __ bind(*op->stub()->continuation());
aoqi@0 2576 }
aoqi@0 2577
aoqi@0 2578
aoqi@0 2579 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
aoqi@0 2580 ciMethodData *md, ciProfileData *data,
aoqi@0 2581 Register recv, Register tmp1, Label* update_done) {
aoqi@0 2582 uint i;
aoqi@0 2583 for (i = 0; i < VirtualCallData::row_limit(); i++) {
aoqi@0 2584 Label next_test;
aoqi@0 2585 // See if the receiver is receiver[n].
aoqi@0 2586 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
aoqi@0 2587 mdo_offset_bias);
aoqi@0 2588 __ ld_ptr(receiver_addr, tmp1);
aoqi@0 2589 __ verify_klass_ptr(tmp1);
aoqi@0 2590 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
aoqi@0 2591 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
aoqi@0 2592 mdo_offset_bias);
aoqi@0 2593 __ ld_ptr(data_addr, tmp1);
aoqi@0 2594 __ add(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 2595 __ st_ptr(tmp1, data_addr);
aoqi@0 2596 __ ba(*update_done);
aoqi@0 2597 __ delayed()->nop();
aoqi@0 2598 __ bind(next_test);
aoqi@0 2599 }
aoqi@0 2600
aoqi@0 2601 // Didn't find receiver; find next empty slot and fill it in
aoqi@0 2602 for (i = 0; i < VirtualCallData::row_limit(); i++) {
aoqi@0 2603 Label next_test;
aoqi@0 2604 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
aoqi@0 2605 mdo_offset_bias);
aoqi@0 2606 __ ld_ptr(recv_addr, tmp1);
aoqi@0 2607 __ br_notnull_short(tmp1, Assembler::pt, next_test);
aoqi@0 2608 __ st_ptr(recv, recv_addr);
aoqi@0 2609 __ set(DataLayout::counter_increment, tmp1);
aoqi@0 2610 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
aoqi@0 2611 mdo_offset_bias);
aoqi@0 2612 __ ba(*update_done);
aoqi@0 2613 __ delayed()->nop();
aoqi@0 2614 __ bind(next_test);
aoqi@0 2615 }
aoqi@0 2616 }
aoqi@0 2617
aoqi@0 2618
aoqi@0 2619 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
aoqi@0 2620 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
aoqi@0 2621 md = method->method_data_or_null();
aoqi@0 2622 assert(md != NULL, "Sanity");
aoqi@0 2623 data = md->bci_to_data(bci);
aoqi@0 2624 assert(data != NULL, "need data for checkcast");
aoqi@0 2625 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
aoqi@0 2626 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
aoqi@0 2627 // The offset is large so bias the mdo by the base of the slot so
aoqi@0 2628 // that the ld can use simm13s to reference the slots of the data
aoqi@0 2629 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
aoqi@0 2630 }
aoqi@0 2631 }
aoqi@0 2632
aoqi@0 2633 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
aoqi@0 2634 // we always need a stub for the failure case.
aoqi@0 2635 CodeStub* stub = op->stub();
aoqi@0 2636 Register obj = op->object()->as_register();
aoqi@0 2637 Register k_RInfo = op->tmp1()->as_register();
aoqi@0 2638 Register klass_RInfo = op->tmp2()->as_register();
aoqi@0 2639 Register dst = op->result_opr()->as_register();
aoqi@0 2640 Register Rtmp1 = op->tmp3()->as_register();
aoqi@0 2641 ciKlass* k = op->klass();
aoqi@0 2642
aoqi@0 2643
aoqi@0 2644 if (obj == k_RInfo) {
aoqi@0 2645 k_RInfo = klass_RInfo;
aoqi@0 2646 klass_RInfo = obj;
aoqi@0 2647 }
aoqi@0 2648
aoqi@0 2649 ciMethodData* md;
aoqi@0 2650 ciProfileData* data;
aoqi@0 2651 int mdo_offset_bias = 0;
aoqi@0 2652 if (op->should_profile()) {
aoqi@0 2653 ciMethod* method = op->profiled_method();
aoqi@0 2654 assert(method != NULL, "Should have method");
aoqi@0 2655 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
aoqi@0 2656
aoqi@0 2657 Label not_null;
aoqi@0 2658 __ br_notnull_short(obj, Assembler::pn, not_null);
aoqi@0 2659 Register mdo = k_RInfo;
aoqi@0 2660 Register data_val = Rtmp1;
aoqi@0 2661 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2662 if (mdo_offset_bias > 0) {
aoqi@0 2663 __ set(mdo_offset_bias, data_val);
aoqi@0 2664 __ add(mdo, data_val, mdo);
aoqi@0 2665 }
aoqi@0 2666 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
aoqi@0 2667 __ ldub(flags_addr, data_val);
aoqi@0 2668 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
aoqi@0 2669 __ stb(data_val, flags_addr);
aoqi@0 2670 __ ba(*obj_is_null);
aoqi@0 2671 __ delayed()->nop();
aoqi@0 2672 __ bind(not_null);
aoqi@0 2673 } else {
aoqi@0 2674 __ br_null(obj, false, Assembler::pn, *obj_is_null);
aoqi@0 2675 __ delayed()->nop();
aoqi@0 2676 }
aoqi@0 2677
aoqi@0 2678 Label profile_cast_failure, profile_cast_success;
aoqi@0 2679 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
aoqi@0 2680 Label *success_target = op->should_profile() ? &profile_cast_success : success;
aoqi@0 2681
aoqi@0 2682 // patching may screw with our temporaries on sparc,
aoqi@0 2683 // so let's do it before loading the class
aoqi@0 2684 if (k->is_loaded()) {
aoqi@0 2685 metadata2reg(k->constant_encoding(), k_RInfo);
aoqi@0 2686 } else {
aoqi@0 2687 klass2reg_with_patching(k_RInfo, op->info_for_patch());
aoqi@0 2688 }
aoqi@0 2689 assert(obj != k_RInfo, "must be different");
aoqi@0 2690
aoqi@0 2691 // get object class
aoqi@0 2692 // not a safepoint as obj null check happens earlier
aoqi@0 2693 __ load_klass(obj, klass_RInfo);
aoqi@0 2694 if (op->fast_check()) {
aoqi@0 2695 assert_different_registers(klass_RInfo, k_RInfo);
aoqi@0 2696 __ cmp(k_RInfo, klass_RInfo);
aoqi@0 2697 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
aoqi@0 2698 __ delayed()->nop();
aoqi@0 2699 } else {
aoqi@0 2700 bool need_slow_path = true;
aoqi@0 2701 if (k->is_loaded()) {
aoqi@0 2702 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
aoqi@0 2703 need_slow_path = false;
aoqi@0 2704 // perform the fast part of the checking logic
aoqi@0 2705 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
aoqi@0 2706 (need_slow_path ? success_target : NULL),
aoqi@0 2707 failure_target, NULL,
aoqi@0 2708 RegisterOrConstant(k->super_check_offset()));
aoqi@0 2709 } else {
aoqi@0 2710 // perform the fast part of the checking logic
aoqi@0 2711 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
aoqi@0 2712 failure_target, NULL);
aoqi@0 2713 }
aoqi@0 2714 if (need_slow_path) {
aoqi@0 2715 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
aoqi@0 2716 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
aoqi@0 2717 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
aoqi@0 2718 __ delayed()->nop();
aoqi@0 2719 __ cmp(G3, 0);
aoqi@0 2720 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
aoqi@0 2721 __ delayed()->nop();
aoqi@0 2722 // Fall through to success case
aoqi@0 2723 }
aoqi@0 2724 }
aoqi@0 2725
aoqi@0 2726 if (op->should_profile()) {
aoqi@0 2727 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
aoqi@0 2728 assert_different_registers(obj, mdo, recv, tmp1);
aoqi@0 2729 __ bind(profile_cast_success);
aoqi@0 2730 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2731 if (mdo_offset_bias > 0) {
aoqi@0 2732 __ set(mdo_offset_bias, tmp1);
aoqi@0 2733 __ add(mdo, tmp1, mdo);
aoqi@0 2734 }
aoqi@0 2735 __ load_klass(obj, recv);
aoqi@0 2736 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
aoqi@0 2737 // Jump over the failure case
aoqi@0 2738 __ ba(*success);
aoqi@0 2739 __ delayed()->nop();
aoqi@0 2740 // Cast failure case
aoqi@0 2741 __ bind(profile_cast_failure);
aoqi@0 2742 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2743 if (mdo_offset_bias > 0) {
aoqi@0 2744 __ set(mdo_offset_bias, tmp1);
aoqi@0 2745 __ add(mdo, tmp1, mdo);
aoqi@0 2746 }
aoqi@0 2747 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
aoqi@0 2748 __ ld_ptr(data_addr, tmp1);
aoqi@0 2749 __ sub(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 2750 __ st_ptr(tmp1, data_addr);
aoqi@0 2751 __ ba(*failure);
aoqi@0 2752 __ delayed()->nop();
aoqi@0 2753 }
aoqi@0 2754 __ ba(*success);
aoqi@0 2755 __ delayed()->nop();
aoqi@0 2756 }
aoqi@0 2757
aoqi@0 2758 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
aoqi@0 2759 LIR_Code code = op->code();
aoqi@0 2760 if (code == lir_store_check) {
aoqi@0 2761 Register value = op->object()->as_register();
aoqi@0 2762 Register array = op->array()->as_register();
aoqi@0 2763 Register k_RInfo = op->tmp1()->as_register();
aoqi@0 2764 Register klass_RInfo = op->tmp2()->as_register();
aoqi@0 2765 Register Rtmp1 = op->tmp3()->as_register();
aoqi@0 2766
aoqi@0 2767 __ verify_oop(value);
aoqi@0 2768 CodeStub* stub = op->stub();
aoqi@0 2769 // check if it needs to be profiled
aoqi@0 2770 ciMethodData* md;
aoqi@0 2771 ciProfileData* data;
aoqi@0 2772 int mdo_offset_bias = 0;
aoqi@0 2773 if (op->should_profile()) {
aoqi@0 2774 ciMethod* method = op->profiled_method();
aoqi@0 2775 assert(method != NULL, "Should have method");
aoqi@0 2776 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
aoqi@0 2777 }
aoqi@0 2778 Label profile_cast_success, profile_cast_failure, done;
aoqi@0 2779 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
aoqi@0 2780 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
aoqi@0 2781
aoqi@0 2782 if (op->should_profile()) {
aoqi@0 2783 Label not_null;
aoqi@0 2784 __ br_notnull_short(value, Assembler::pn, not_null);
aoqi@0 2785 Register mdo = k_RInfo;
aoqi@0 2786 Register data_val = Rtmp1;
aoqi@0 2787 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2788 if (mdo_offset_bias > 0) {
aoqi@0 2789 __ set(mdo_offset_bias, data_val);
aoqi@0 2790 __ add(mdo, data_val, mdo);
aoqi@0 2791 }
aoqi@0 2792 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
aoqi@0 2793 __ ldub(flags_addr, data_val);
aoqi@0 2794 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
aoqi@0 2795 __ stb(data_val, flags_addr);
aoqi@0 2796 __ ba_short(done);
aoqi@0 2797 __ bind(not_null);
aoqi@0 2798 } else {
aoqi@0 2799 __ br_null_short(value, Assembler::pn, done);
aoqi@0 2800 }
aoqi@0 2801 add_debug_info_for_null_check_here(op->info_for_exception());
aoqi@0 2802 __ load_klass(array, k_RInfo);
aoqi@0 2803 __ load_klass(value, klass_RInfo);
aoqi@0 2804
aoqi@0 2805 // get instance klass
aoqi@0 2806 __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
aoqi@0 2807 // perform the fast part of the checking logic
aoqi@0 2808 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
aoqi@0 2809
aoqi@0 2810 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
aoqi@0 2811 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
aoqi@0 2812 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
aoqi@0 2813 __ delayed()->nop();
aoqi@0 2814 __ cmp(G3, 0);
aoqi@0 2815 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
aoqi@0 2816 __ delayed()->nop();
aoqi@0 2817 // fall through to the success case
aoqi@0 2818
aoqi@0 2819 if (op->should_profile()) {
aoqi@0 2820 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
aoqi@0 2821 assert_different_registers(value, mdo, recv, tmp1);
aoqi@0 2822 __ bind(profile_cast_success);
aoqi@0 2823 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2824 if (mdo_offset_bias > 0) {
aoqi@0 2825 __ set(mdo_offset_bias, tmp1);
aoqi@0 2826 __ add(mdo, tmp1, mdo);
aoqi@0 2827 }
aoqi@0 2828 __ load_klass(value, recv);
aoqi@0 2829 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
aoqi@0 2830 __ ba_short(done);
aoqi@0 2831 // Cast failure case
aoqi@0 2832 __ bind(profile_cast_failure);
aoqi@0 2833 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 2834 if (mdo_offset_bias > 0) {
aoqi@0 2835 __ set(mdo_offset_bias, tmp1);
aoqi@0 2836 __ add(mdo, tmp1, mdo);
aoqi@0 2837 }
aoqi@0 2838 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
aoqi@0 2839 __ ld_ptr(data_addr, tmp1);
aoqi@0 2840 __ sub(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 2841 __ st_ptr(tmp1, data_addr);
aoqi@0 2842 __ ba(*stub->entry());
aoqi@0 2843 __ delayed()->nop();
aoqi@0 2844 }
aoqi@0 2845 __ bind(done);
aoqi@0 2846 } else if (code == lir_checkcast) {
aoqi@0 2847 Register obj = op->object()->as_register();
aoqi@0 2848 Register dst = op->result_opr()->as_register();
aoqi@0 2849 Label success;
aoqi@0 2850 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
aoqi@0 2851 __ bind(success);
aoqi@0 2852 __ mov(obj, dst);
aoqi@0 2853 } else if (code == lir_instanceof) {
aoqi@0 2854 Register obj = op->object()->as_register();
aoqi@0 2855 Register dst = op->result_opr()->as_register();
aoqi@0 2856 Label success, failure, done;
aoqi@0 2857 emit_typecheck_helper(op, &success, &failure, &failure);
aoqi@0 2858 __ bind(failure);
aoqi@0 2859 __ set(0, dst);
aoqi@0 2860 __ ba_short(done);
aoqi@0 2861 __ bind(success);
aoqi@0 2862 __ set(1, dst);
aoqi@0 2863 __ bind(done);
aoqi@0 2864 } else {
aoqi@0 2865 ShouldNotReachHere();
aoqi@0 2866 }
aoqi@0 2867
aoqi@0 2868 }
aoqi@0 2869
aoqi@0 2870
aoqi@0 2871 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
aoqi@0 2872 if (op->code() == lir_cas_long) {
aoqi@0 2873 assert(VM_Version::supports_cx8(), "wrong machine");
aoqi@0 2874 Register addr = op->addr()->as_pointer_register();
aoqi@0 2875 Register cmp_value_lo = op->cmp_value()->as_register_lo();
aoqi@0 2876 Register cmp_value_hi = op->cmp_value()->as_register_hi();
aoqi@0 2877 Register new_value_lo = op->new_value()->as_register_lo();
aoqi@0 2878 Register new_value_hi = op->new_value()->as_register_hi();
aoqi@0 2879 Register t1 = op->tmp1()->as_register();
aoqi@0 2880 Register t2 = op->tmp2()->as_register();
aoqi@0 2881 #ifdef _LP64
aoqi@0 2882 __ mov(cmp_value_lo, t1);
aoqi@0 2883 __ mov(new_value_lo, t2);
aoqi@0 2884 // perform the compare and swap operation
aoqi@0 2885 __ casx(addr, t1, t2);
aoqi@0 2886 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
aoqi@0 2887 // overwritten with the original value in "addr" and will be equal to t1.
aoqi@0 2888 __ cmp(t1, t2);
aoqi@0 2889 #else
aoqi@0 2890 // move high and low halves of long values into single registers
aoqi@0 2891 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
aoqi@0 2892 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
aoqi@0 2893 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
aoqi@0 2894 __ sllx(new_value_hi, 32, t2);
aoqi@0 2895 __ srl(new_value_lo, 0, new_value_lo);
aoqi@0 2896 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
aoqi@0 2897 // perform the compare and swap operation
aoqi@0 2898 __ casx(addr, t1, t2);
aoqi@0 2899 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
aoqi@0 2900 // overwritten with the original value in "addr" and will be equal to t1.
aoqi@0 2901 // Produce icc flag for 32bit.
aoqi@0 2902 __ sub(t1, t2, t2);
aoqi@0 2903 __ srlx(t2, 32, t1);
aoqi@0 2904 __ orcc(t2, t1, G0);
aoqi@0 2905 #endif
aoqi@0 2906 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
aoqi@0 2907 Register addr = op->addr()->as_pointer_register();
aoqi@0 2908 Register cmp_value = op->cmp_value()->as_register();
aoqi@0 2909 Register new_value = op->new_value()->as_register();
aoqi@0 2910 Register t1 = op->tmp1()->as_register();
aoqi@0 2911 Register t2 = op->tmp2()->as_register();
aoqi@0 2912 __ mov(cmp_value, t1);
aoqi@0 2913 __ mov(new_value, t2);
aoqi@0 2914 if (op->code() == lir_cas_obj) {
aoqi@0 2915 if (UseCompressedOops) {
aoqi@0 2916 __ encode_heap_oop(t1);
aoqi@0 2917 __ encode_heap_oop(t2);
aoqi@0 2918 __ cas(addr, t1, t2);
aoqi@0 2919 } else {
aoqi@0 2920 __ cas_ptr(addr, t1, t2);
aoqi@0 2921 }
aoqi@0 2922 } else {
aoqi@0 2923 __ cas(addr, t1, t2);
aoqi@0 2924 }
aoqi@0 2925 __ cmp(t1, t2);
aoqi@0 2926 } else {
aoqi@0 2927 Unimplemented();
aoqi@0 2928 }
aoqi@0 2929 }
aoqi@0 2930
aoqi@0 2931 void LIR_Assembler::set_24bit_FPU() {
aoqi@0 2932 Unimplemented();
aoqi@0 2933 }
aoqi@0 2934
aoqi@0 2935
aoqi@0 2936 void LIR_Assembler::reset_FPU() {
aoqi@0 2937 Unimplemented();
aoqi@0 2938 }
aoqi@0 2939
aoqi@0 2940
aoqi@0 2941 void LIR_Assembler::breakpoint() {
aoqi@0 2942 __ breakpoint_trap();
aoqi@0 2943 }
aoqi@0 2944
aoqi@0 2945
aoqi@0 2946 void LIR_Assembler::push(LIR_Opr opr) {
aoqi@0 2947 Unimplemented();
aoqi@0 2948 }
aoqi@0 2949
aoqi@0 2950
aoqi@0 2951 void LIR_Assembler::pop(LIR_Opr opr) {
aoqi@0 2952 Unimplemented();
aoqi@0 2953 }
aoqi@0 2954
aoqi@0 2955
aoqi@0 2956 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
aoqi@0 2957 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
aoqi@0 2958 Register dst = dst_opr->as_register();
aoqi@0 2959 Register reg = mon_addr.base();
aoqi@0 2960 int offset = mon_addr.disp();
aoqi@0 2961 // compute pointer to BasicLock
aoqi@0 2962 if (mon_addr.is_simm13()) {
aoqi@0 2963 __ add(reg, offset, dst);
aoqi@0 2964 } else {
aoqi@0 2965 __ set(offset, dst);
aoqi@0 2966 __ add(dst, reg, dst);
aoqi@0 2967 }
aoqi@0 2968 }
aoqi@0 2969
aoqi@0 2970 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
aoqi@0 2971 fatal("CRC32 intrinsic is not implemented on this platform");
aoqi@0 2972 }
aoqi@0 2973
aoqi@0 2974 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
aoqi@0 2975 Register obj = op->obj_opr()->as_register();
aoqi@0 2976 Register hdr = op->hdr_opr()->as_register();
aoqi@0 2977 Register lock = op->lock_opr()->as_register();
aoqi@0 2978
aoqi@0 2979 // obj may not be an oop
aoqi@0 2980 if (op->code() == lir_lock) {
aoqi@0 2981 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
aoqi@0 2982 if (UseFastLocking) {
aoqi@0 2983 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
aoqi@0 2984 // add debug info for NullPointerException only if one is possible
aoqi@0 2985 if (op->info() != NULL) {
aoqi@0 2986 add_debug_info_for_null_check_here(op->info());
aoqi@0 2987 }
aoqi@0 2988 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
aoqi@0 2989 } else {
aoqi@0 2990 // always do slow locking
aoqi@0 2991 // note: the slow locking code could be inlined here, however if we use
aoqi@0 2992 // slow locking, speed doesn't matter anyway and this solution is
aoqi@0 2993 // simpler and requires less duplicated code - additionally, the
aoqi@0 2994 // slow locking code is the same in either case which simplifies
aoqi@0 2995 // debugging
aoqi@0 2996 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
aoqi@0 2997 __ delayed()->nop();
aoqi@0 2998 }
aoqi@0 2999 } else {
aoqi@0 3000 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
aoqi@0 3001 if (UseFastLocking) {
aoqi@0 3002 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
aoqi@0 3003 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
aoqi@0 3004 } else {
aoqi@0 3005 // always do slow unlocking
aoqi@0 3006 // note: the slow unlocking code could be inlined here, however if we use
aoqi@0 3007 // slow unlocking, speed doesn't matter anyway and this solution is
aoqi@0 3008 // simpler and requires less duplicated code - additionally, the
aoqi@0 3009 // slow unlocking code is the same in either case which simplifies
aoqi@0 3010 // debugging
aoqi@0 3011 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
aoqi@0 3012 __ delayed()->nop();
aoqi@0 3013 }
aoqi@0 3014 }
aoqi@0 3015 __ bind(*op->stub()->continuation());
aoqi@0 3016 }
aoqi@0 3017
aoqi@0 3018
aoqi@0 3019 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
aoqi@0 3020 ciMethod* method = op->profiled_method();
aoqi@0 3021 int bci = op->profiled_bci();
aoqi@0 3022 ciMethod* callee = op->profiled_callee();
aoqi@0 3023
aoqi@0 3024 // Update counter for all call types
aoqi@0 3025 ciMethodData* md = method->method_data_or_null();
aoqi@0 3026 assert(md != NULL, "Sanity");
aoqi@0 3027 ciProfileData* data = md->bci_to_data(bci);
aoqi@0 3028 assert(data->is_CounterData(), "need CounterData for calls");
aoqi@0 3029 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
aoqi@0 3030 Register mdo = op->mdo()->as_register();
aoqi@0 3031 #ifdef _LP64
aoqi@0 3032 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
aoqi@0 3033 Register tmp1 = op->tmp1()->as_register_lo();
aoqi@0 3034 #else
aoqi@0 3035 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
aoqi@0 3036 Register tmp1 = op->tmp1()->as_register();
aoqi@0 3037 #endif
aoqi@0 3038 metadata2reg(md->constant_encoding(), mdo);
aoqi@0 3039 int mdo_offset_bias = 0;
aoqi@0 3040 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
aoqi@0 3041 data->size_in_bytes())) {
aoqi@0 3042 // The offset is large so bias the mdo by the base of the slot so
aoqi@0 3043 // that the ld can use simm13s to reference the slots of the data
aoqi@0 3044 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
aoqi@0 3045 __ set(mdo_offset_bias, O7);
aoqi@0 3046 __ add(mdo, O7, mdo);
aoqi@0 3047 }
aoqi@0 3048
aoqi@0 3049 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
aoqi@0 3050 Bytecodes::Code bc = method->java_code_at_bci(bci);
aoqi@0 3051 const bool callee_is_static = callee->is_loaded() && callee->is_static();
aoqi@0 3052 // Perform additional virtual call profiling for invokevirtual and
aoqi@0 3053 // invokeinterface bytecodes
aoqi@0 3054 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
aoqi@0 3055 !callee_is_static && // required for optimized MH invokes
aoqi@0 3056 C1ProfileVirtualCalls) {
aoqi@0 3057 assert(op->recv()->is_single_cpu(), "recv must be allocated");
aoqi@0 3058 Register recv = op->recv()->as_register();
aoqi@0 3059 assert_different_registers(mdo, tmp1, recv);
aoqi@0 3060 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
aoqi@0 3061 ciKlass* known_klass = op->known_holder();
aoqi@0 3062 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
aoqi@0 3063 // We know the type that will be seen at this call site; we can
aoqi@0 3064 // statically update the MethodData* rather than needing to do
aoqi@0 3065 // dynamic tests on the receiver type
aoqi@0 3066
aoqi@0 3067 // NOTE: we should probably put a lock around this search to
aoqi@0 3068 // avoid collisions by concurrent compilations
aoqi@0 3069 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
aoqi@0 3070 uint i;
aoqi@0 3071 for (i = 0; i < VirtualCallData::row_limit(); i++) {
aoqi@0 3072 ciKlass* receiver = vc_data->receiver(i);
aoqi@0 3073 if (known_klass->equals(receiver)) {
aoqi@0 3074 Address data_addr(mdo, md->byte_offset_of_slot(data,
aoqi@0 3075 VirtualCallData::receiver_count_offset(i)) -
aoqi@0 3076 mdo_offset_bias);
aoqi@0 3077 __ ld_ptr(data_addr, tmp1);
aoqi@0 3078 __ add(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 3079 __ st_ptr(tmp1, data_addr);
aoqi@0 3080 return;
aoqi@0 3081 }
aoqi@0 3082 }
aoqi@0 3083
aoqi@0 3084 // Receiver type not found in profile data; select an empty slot
aoqi@0 3085
aoqi@0 3086 // Note that this is less efficient than it should be because it
aoqi@0 3087 // always does a write to the receiver part of the
aoqi@0 3088 // VirtualCallData rather than just the first time
aoqi@0 3089 for (i = 0; i < VirtualCallData::row_limit(); i++) {
aoqi@0 3090 ciKlass* receiver = vc_data->receiver(i);
aoqi@0 3091 if (receiver == NULL) {
aoqi@0 3092 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
aoqi@0 3093 mdo_offset_bias);
aoqi@0 3094 metadata2reg(known_klass->constant_encoding(), tmp1);
aoqi@0 3095 __ st_ptr(tmp1, recv_addr);
aoqi@0 3096 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
aoqi@0 3097 mdo_offset_bias);
aoqi@0 3098 __ ld_ptr(data_addr, tmp1);
aoqi@0 3099 __ add(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 3100 __ st_ptr(tmp1, data_addr);
aoqi@0 3101 return;
aoqi@0 3102 }
aoqi@0 3103 }
aoqi@0 3104 } else {
aoqi@0 3105 __ load_klass(recv, recv);
aoqi@0 3106 Label update_done;
aoqi@0 3107 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
aoqi@0 3108 // Receiver did not match any saved receiver and there is no empty row for it.
aoqi@0 3109 // Increment total counter to indicate polymorphic case.
aoqi@0 3110 __ ld_ptr(counter_addr, tmp1);
aoqi@0 3111 __ add(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 3112 __ st_ptr(tmp1, counter_addr);
aoqi@0 3113
aoqi@0 3114 __ bind(update_done);
aoqi@0 3115 }
aoqi@0 3116 } else {
aoqi@0 3117 // Static call
aoqi@0 3118 __ ld_ptr(counter_addr, tmp1);
aoqi@0 3119 __ add(tmp1, DataLayout::counter_increment, tmp1);
aoqi@0 3120 __ st_ptr(tmp1, counter_addr);
aoqi@0 3121 }
aoqi@0 3122 }
aoqi@0 3123
aoqi@0 3124 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
aoqi@0 3125 Register obj = op->obj()->as_register();
aoqi@0 3126 Register tmp1 = op->tmp()->as_pointer_register();
aoqi@0 3127 Register tmp2 = G1;
aoqi@0 3128 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
aoqi@0 3129 ciKlass* exact_klass = op->exact_klass();
aoqi@0 3130 intptr_t current_klass = op->current_klass();
aoqi@0 3131 bool not_null = op->not_null();
aoqi@0 3132 bool no_conflict = op->no_conflict();
aoqi@0 3133
aoqi@0 3134 Label update, next, none;
aoqi@0 3135
aoqi@0 3136 bool do_null = !not_null;
aoqi@0 3137 bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
aoqi@0 3138 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
aoqi@0 3139
aoqi@0 3140 assert(do_null || do_update, "why are we here?");
aoqi@0 3141 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
aoqi@0 3142
aoqi@0 3143 __ verify_oop(obj);
aoqi@0 3144
aoqi@0 3145 if (tmp1 != obj) {
aoqi@0 3146 __ mov(obj, tmp1);
aoqi@0 3147 }
aoqi@0 3148 if (do_null) {
aoqi@0 3149 __ br_notnull_short(tmp1, Assembler::pt, update);
aoqi@0 3150 if (!TypeEntries::was_null_seen(current_klass)) {
aoqi@0 3151 __ ld_ptr(mdo_addr, tmp1);
aoqi@0 3152 __ or3(tmp1, TypeEntries::null_seen, tmp1);
aoqi@0 3153 __ st_ptr(tmp1, mdo_addr);
aoqi@0 3154 }
aoqi@0 3155 if (do_update) {
aoqi@0 3156 __ ba(next);
aoqi@0 3157 __ delayed()->nop();
aoqi@0 3158 }
aoqi@0 3159 #ifdef ASSERT
aoqi@0 3160 } else {
aoqi@0 3161 __ br_notnull_short(tmp1, Assembler::pt, update);
aoqi@0 3162 __ stop("unexpect null obj");
aoqi@0 3163 #endif
aoqi@0 3164 }
aoqi@0 3165
aoqi@0 3166 __ bind(update);
aoqi@0 3167
aoqi@0 3168 if (do_update) {
aoqi@0 3169 #ifdef ASSERT
aoqi@0 3170 if (exact_klass != NULL) {
aoqi@0 3171 Label ok;
aoqi@0 3172 __ load_klass(tmp1, tmp1);
aoqi@0 3173 metadata2reg(exact_klass->constant_encoding(), tmp2);
aoqi@0 3174 __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
aoqi@0 3175 __ stop("exact klass and actual klass differ");
aoqi@0 3176 __ bind(ok);
aoqi@0 3177 }
aoqi@0 3178 #endif
aoqi@0 3179
aoqi@0 3180 Label do_update;
aoqi@0 3181 __ ld_ptr(mdo_addr, tmp2);
aoqi@0 3182
aoqi@0 3183 if (!no_conflict) {
aoqi@0 3184 if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
aoqi@0 3185 if (exact_klass != NULL) {
aoqi@0 3186 metadata2reg(exact_klass->constant_encoding(), tmp1);
aoqi@0 3187 } else {
aoqi@0 3188 __ load_klass(tmp1, tmp1);
aoqi@0 3189 }
aoqi@0 3190
aoqi@0 3191 __ xor3(tmp1, tmp2, tmp1);
aoqi@0 3192 __ btst(TypeEntries::type_klass_mask, tmp1);
aoqi@0 3193 // klass seen before, nothing to do. The unknown bit may have been
aoqi@0 3194 // set already but no need to check.
aoqi@0 3195 __ brx(Assembler::zero, false, Assembler::pt, next);
aoqi@0 3196 __ delayed()->
aoqi@0 3197
aoqi@0 3198 btst(TypeEntries::type_unknown, tmp1);
aoqi@0 3199 // already unknown. Nothing to do anymore.
aoqi@0 3200 __ brx(Assembler::notZero, false, Assembler::pt, next);
aoqi@0 3201
aoqi@0 3202 if (TypeEntries::is_type_none(current_klass)) {
aoqi@0 3203 __ delayed()->btst(TypeEntries::type_mask, tmp2);
aoqi@0 3204 __ brx(Assembler::zero, true, Assembler::pt, do_update);
aoqi@0 3205 // first time here. Set profile type.
aoqi@0 3206 __ delayed()->or3(tmp2, tmp1, tmp2);
aoqi@0 3207 } else {
aoqi@0 3208 __ delayed()->nop();
aoqi@0 3209 }
aoqi@0 3210 } else {
aoqi@0 3211 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
aoqi@0 3212 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
aoqi@0 3213
aoqi@0 3214 __ btst(TypeEntries::type_unknown, tmp2);
aoqi@0 3215 // already unknown. Nothing to do anymore.
aoqi@0 3216 __ brx(Assembler::notZero, false, Assembler::pt, next);
aoqi@0 3217 __ delayed()->nop();
aoqi@0 3218 }
aoqi@0 3219
aoqi@0 3220 // different than before. Cannot keep accurate profile.
aoqi@0 3221 __ or3(tmp2, TypeEntries::type_unknown, tmp2);
aoqi@0 3222 } else {
aoqi@0 3223 // There's a single possible klass at this profile point
aoqi@0 3224 assert(exact_klass != NULL, "should be");
aoqi@0 3225 if (TypeEntries::is_type_none(current_klass)) {
aoqi@0 3226 metadata2reg(exact_klass->constant_encoding(), tmp1);
aoqi@0 3227 __ xor3(tmp1, tmp2, tmp1);
aoqi@0 3228 __ btst(TypeEntries::type_klass_mask, tmp1);
aoqi@0 3229 __ brx(Assembler::zero, false, Assembler::pt, next);
aoqi@0 3230 #ifdef ASSERT
aoqi@0 3231
aoqi@0 3232 {
aoqi@0 3233 Label ok;
aoqi@0 3234 __ delayed()->btst(TypeEntries::type_mask, tmp2);
aoqi@0 3235 __ brx(Assembler::zero, true, Assembler::pt, ok);
aoqi@0 3236 __ delayed()->nop();
aoqi@0 3237
aoqi@0 3238 __ stop("unexpected profiling mismatch");
aoqi@0 3239 __ bind(ok);
aoqi@0 3240 }
aoqi@0 3241 // first time here. Set profile type.
aoqi@0 3242 __ or3(tmp2, tmp1, tmp2);
aoqi@0 3243 #else
aoqi@0 3244 // first time here. Set profile type.
aoqi@0 3245 __ delayed()->or3(tmp2, tmp1, tmp2);
aoqi@0 3246 #endif
aoqi@0 3247
aoqi@0 3248 } else {
aoqi@0 3249 assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
aoqi@0 3250 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
aoqi@0 3251
aoqi@0 3252 // already unknown. Nothing to do anymore.
aoqi@0 3253 __ btst(TypeEntries::type_unknown, tmp2);
aoqi@0 3254 __ brx(Assembler::notZero, false, Assembler::pt, next);
aoqi@0 3255 __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
aoqi@0 3256 }
aoqi@0 3257 }
aoqi@0 3258
aoqi@0 3259 __ bind(do_update);
aoqi@0 3260 __ st_ptr(tmp2, mdo_addr);
aoqi@0 3261
aoqi@0 3262 __ bind(next);
aoqi@0 3263 }
aoqi@0 3264 }
aoqi@0 3265
aoqi@0 3266 void LIR_Assembler::align_backward_branch_target() {
aoqi@0 3267 __ align(OptoLoopAlignment);
aoqi@0 3268 }
aoqi@0 3269
aoqi@0 3270
aoqi@0 3271 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
aoqi@0 3272 // make sure we are expecting a delay
aoqi@0 3273 // this has the side effect of clearing the delay state
aoqi@0 3274 // so we can use _masm instead of _masm->delayed() to do the
aoqi@0 3275 // code generation.
aoqi@0 3276 __ delayed();
aoqi@0 3277
aoqi@0 3278 // make sure we only emit one instruction
aoqi@0 3279 int offset = code_offset();
aoqi@0 3280 op->delay_op()->emit_code(this);
aoqi@0 3281 #ifdef ASSERT
aoqi@0 3282 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
aoqi@0 3283 op->delay_op()->print();
aoqi@0 3284 }
aoqi@0 3285 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
aoqi@0 3286 "only one instruction can go in a delay slot");
aoqi@0 3287 #endif
aoqi@0 3288
aoqi@0 3289 // we may also be emitting the call info for the instruction
aoqi@0 3290 // which we are the delay slot of.
aoqi@0 3291 CodeEmitInfo* call_info = op->call_info();
aoqi@0 3292 if (call_info) {
aoqi@0 3293 add_call_info(code_offset(), call_info);
aoqi@0 3294 }
aoqi@0 3295
aoqi@0 3296 if (VerifyStackAtCalls) {
aoqi@0 3297 _masm->sub(FP, SP, O7);
aoqi@0 3298 _masm->cmp(O7, initial_frame_size_in_bytes());
aoqi@0 3299 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
aoqi@0 3300 }
aoqi@0 3301 }
aoqi@0 3302
aoqi@0 3303
aoqi@0 3304 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
aoqi@0 3305 assert(left->is_register(), "can only handle registers");
aoqi@0 3306
aoqi@0 3307 if (left->is_single_cpu()) {
aoqi@0 3308 __ neg(left->as_register(), dest->as_register());
aoqi@0 3309 } else if (left->is_single_fpu()) {
aoqi@0 3310 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
aoqi@0 3311 } else if (left->is_double_fpu()) {
aoqi@0 3312 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
aoqi@0 3313 } else {
aoqi@0 3314 assert (left->is_double_cpu(), "Must be a long");
aoqi@0 3315 Register Rlow = left->as_register_lo();
aoqi@0 3316 Register Rhi = left->as_register_hi();
aoqi@0 3317 #ifdef _LP64
aoqi@0 3318 __ sub(G0, Rlow, dest->as_register_lo());
aoqi@0 3319 #else
aoqi@0 3320 __ subcc(G0, Rlow, dest->as_register_lo());
aoqi@0 3321 __ subc (G0, Rhi, dest->as_register_hi());
aoqi@0 3322 #endif
aoqi@0 3323 }
aoqi@0 3324 }
aoqi@0 3325
aoqi@0 3326
aoqi@0 3327 void LIR_Assembler::fxch(int i) {
aoqi@0 3328 Unimplemented();
aoqi@0 3329 }
aoqi@0 3330
aoqi@0 3331 void LIR_Assembler::fld(int i) {
aoqi@0 3332 Unimplemented();
aoqi@0 3333 }
aoqi@0 3334
aoqi@0 3335 void LIR_Assembler::ffree(int i) {
aoqi@0 3336 Unimplemented();
aoqi@0 3337 }
aoqi@0 3338
aoqi@0 3339 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
aoqi@0 3340 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
aoqi@0 3341
aoqi@0 3342 // if tmp is invalid, then the function being called doesn't destroy the thread
aoqi@0 3343 if (tmp->is_valid()) {
aoqi@0 3344 __ save_thread(tmp->as_register());
aoqi@0 3345 }
aoqi@0 3346 __ call(dest, relocInfo::runtime_call_type);
aoqi@0 3347 __ delayed()->nop();
aoqi@0 3348 if (info != NULL) {
aoqi@0 3349 add_call_info_here(info);
aoqi@0 3350 }
aoqi@0 3351 if (tmp->is_valid()) {
aoqi@0 3352 __ restore_thread(tmp->as_register());
aoqi@0 3353 }
aoqi@0 3354
aoqi@0 3355 #ifdef ASSERT
aoqi@0 3356 __ verify_thread();
aoqi@0 3357 #endif // ASSERT
aoqi@0 3358 }
aoqi@0 3359
aoqi@0 3360
aoqi@0 3361 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
aoqi@0 3362 #ifdef _LP64
aoqi@0 3363 ShouldNotReachHere();
aoqi@0 3364 #endif
aoqi@0 3365
aoqi@0 3366 NEEDS_CLEANUP;
aoqi@0 3367 if (type == T_LONG) {
aoqi@0 3368 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
aoqi@0 3369
aoqi@0 3370 // (extended to allow indexed as well as constant displaced for JSR-166)
aoqi@0 3371 Register idx = noreg; // contains either constant offset or index
aoqi@0 3372
aoqi@0 3373 int disp = mem_addr->disp();
aoqi@0 3374 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
aoqi@0 3375 if (!Assembler::is_simm13(disp)) {
aoqi@0 3376 idx = O7;
aoqi@0 3377 __ set(disp, idx);
aoqi@0 3378 }
aoqi@0 3379 } else {
aoqi@0 3380 assert(disp == 0, "not both indexed and disp");
aoqi@0 3381 idx = mem_addr->index()->as_register();
aoqi@0 3382 }
aoqi@0 3383
aoqi@0 3384 int null_check_offset = -1;
aoqi@0 3385
aoqi@0 3386 Register base = mem_addr->base()->as_register();
aoqi@0 3387 if (src->is_register() && dest->is_address()) {
aoqi@0 3388 // G4 is high half, G5 is low half
aoqi@0 3389 // clear the top bits of G5, and scale up G4
aoqi@0 3390 __ srl (src->as_register_lo(), 0, G5);
aoqi@0 3391 __ sllx(src->as_register_hi(), 32, G4);
aoqi@0 3392 // combine the two halves into the 64 bits of G4
aoqi@0 3393 __ or3(G4, G5, G4);
aoqi@0 3394 null_check_offset = __ offset();
aoqi@0 3395 if (idx == noreg) {
aoqi@0 3396 __ stx(G4, base, disp);
aoqi@0 3397 } else {
aoqi@0 3398 __ stx(G4, base, idx);
aoqi@0 3399 }
aoqi@0 3400 } else if (src->is_address() && dest->is_register()) {
aoqi@0 3401 null_check_offset = __ offset();
aoqi@0 3402 if (idx == noreg) {
aoqi@0 3403 __ ldx(base, disp, G5);
aoqi@0 3404 } else {
aoqi@0 3405 __ ldx(base, idx, G5);
aoqi@0 3406 }
aoqi@0 3407 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
aoqi@0 3408 __ mov (G5, dest->as_register_lo()); // copy low half into lo
aoqi@0 3409 } else {
aoqi@0 3410 Unimplemented();
aoqi@0 3411 }
aoqi@0 3412 if (info != NULL) {
aoqi@0 3413 add_debug_info_for_null_check(null_check_offset, info);
aoqi@0 3414 }
aoqi@0 3415
aoqi@0 3416 } else {
aoqi@0 3417 // use normal move for all other volatiles since they don't need
aoqi@0 3418 // special handling to remain atomic.
aoqi@0 3419 move_op(src, dest, type, lir_patch_none, info, false, false, false);
aoqi@0 3420 }
aoqi@0 3421 }
aoqi@0 3422
aoqi@0 3423 void LIR_Assembler::membar() {
aoqi@0 3424 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
aoqi@0 3425 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
aoqi@0 3426 }
aoqi@0 3427
aoqi@0 3428 void LIR_Assembler::membar_acquire() {
aoqi@0 3429 // no-op on TSO
aoqi@0 3430 }
aoqi@0 3431
aoqi@0 3432 void LIR_Assembler::membar_release() {
aoqi@0 3433 // no-op on TSO
aoqi@0 3434 }
aoqi@0 3435
aoqi@0 3436 void LIR_Assembler::membar_loadload() {
aoqi@0 3437 // no-op
aoqi@0 3438 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
aoqi@0 3439 }
aoqi@0 3440
aoqi@0 3441 void LIR_Assembler::membar_storestore() {
aoqi@0 3442 // no-op
aoqi@0 3443 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
aoqi@0 3444 }
aoqi@0 3445
aoqi@0 3446 void LIR_Assembler::membar_loadstore() {
aoqi@0 3447 // no-op
aoqi@0 3448 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
aoqi@0 3449 }
aoqi@0 3450
aoqi@0 3451 void LIR_Assembler::membar_storeload() {
aoqi@0 3452 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
aoqi@0 3453 }
aoqi@0 3454
aoqi@0 3455
aoqi@0 3456 // Pack two sequential registers containing 32 bit values
aoqi@0 3457 // into a single 64 bit register.
aoqi@0 3458 // src and src->successor() are packed into dst
aoqi@0 3459 // src and dst may be the same register.
aoqi@0 3460 // Note: src is destroyed
aoqi@0 3461 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
aoqi@0 3462 Register rs = src->as_register();
aoqi@0 3463 Register rd = dst->as_register_lo();
aoqi@0 3464 __ sllx(rs, 32, rs);
aoqi@0 3465 __ srl(rs->successor(), 0, rs->successor());
aoqi@0 3466 __ or3(rs, rs->successor(), rd);
aoqi@0 3467 }
aoqi@0 3468
aoqi@0 3469 // Unpack a 64 bit value in a register into
aoqi@0 3470 // two sequential registers.
aoqi@0 3471 // src is unpacked into dst and dst->successor()
aoqi@0 3472 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
aoqi@0 3473 Register rs = src->as_register_lo();
aoqi@0 3474 Register rd = dst->as_register_hi();
aoqi@0 3475 assert_different_registers(rs, rd, rd->successor());
aoqi@0 3476 __ srlx(rs, 32, rd);
aoqi@0 3477 __ srl (rs, 0, rd->successor());
aoqi@0 3478 }
aoqi@0 3479
aoqi@0 3480
aoqi@0 3481 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
aoqi@0 3482 LIR_Address* addr = addr_opr->as_address_ptr();
aoqi@0 3483 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
aoqi@0 3484
aoqi@0 3485 if (Assembler::is_simm13(addr->disp())) {
aoqi@0 3486 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
aoqi@0 3487 } else {
aoqi@0 3488 __ set(addr->disp(), G3_scratch);
aoqi@0 3489 __ add(addr->base()->as_pointer_register(), G3_scratch, dest->as_pointer_register());
aoqi@0 3490 }
aoqi@0 3491 }
aoqi@0 3492
aoqi@0 3493
aoqi@0 3494 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
aoqi@0 3495 assert(result_reg->is_register(), "check");
aoqi@0 3496 __ mov(G2_thread, result_reg->as_register());
aoqi@0 3497 }
aoqi@0 3498
aoqi@0 3499 #ifdef ASSERT
aoqi@0 3500 // emit run-time assertion
aoqi@0 3501 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
aoqi@0 3502 assert(op->code() == lir_assert, "must be");
aoqi@0 3503
aoqi@0 3504 if (op->in_opr1()->is_valid()) {
aoqi@0 3505 assert(op->in_opr2()->is_valid(), "both operands must be valid");
aoqi@0 3506 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
aoqi@0 3507 } else {
aoqi@0 3508 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
aoqi@0 3509 assert(op->condition() == lir_cond_always, "no other conditions allowed");
aoqi@0 3510 }
aoqi@0 3511
aoqi@0 3512 Label ok;
aoqi@0 3513 if (op->condition() != lir_cond_always) {
aoqi@0 3514 Assembler::Condition acond;
aoqi@0 3515 switch (op->condition()) {
aoqi@0 3516 case lir_cond_equal: acond = Assembler::equal; break;
aoqi@0 3517 case lir_cond_notEqual: acond = Assembler::notEqual; break;
aoqi@0 3518 case lir_cond_less: acond = Assembler::less; break;
aoqi@0 3519 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
aoqi@0 3520 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
aoqi@0 3521 case lir_cond_greater: acond = Assembler::greater; break;
aoqi@0 3522 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
aoqi@0 3523 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
aoqi@0 3524 default: ShouldNotReachHere();
aoqi@0 3525 };
aoqi@0 3526 __ br(acond, false, Assembler::pt, ok);
aoqi@0 3527 __ delayed()->nop();
aoqi@0 3528 }
aoqi@0 3529 if (op->halt()) {
aoqi@0 3530 const char* str = __ code_string(op->msg());
aoqi@0 3531 __ stop(str);
aoqi@0 3532 } else {
aoqi@0 3533 breakpoint();
aoqi@0 3534 }
aoqi@0 3535 __ bind(ok);
aoqi@0 3536 }
aoqi@0 3537 #endif
aoqi@0 3538
aoqi@0 3539 void LIR_Assembler::peephole(LIR_List* lir) {
aoqi@0 3540 LIR_OpList* inst = lir->instructions_list();
aoqi@0 3541 for (int i = 0; i < inst->length(); i++) {
aoqi@0 3542 LIR_Op* op = inst->at(i);
aoqi@0 3543 switch (op->code()) {
aoqi@0 3544 case lir_cond_float_branch:
aoqi@0 3545 case lir_branch: {
aoqi@0 3546 LIR_OpBranch* branch = op->as_OpBranch();
aoqi@0 3547 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
aoqi@0 3548 LIR_Op* delay_op = NULL;
aoqi@0 3549 // we'd like to be able to pull following instructions into
aoqi@0 3550 // this slot but we don't know enough to do it safely yet so
aoqi@0 3551 // only optimize block to block control flow.
aoqi@0 3552 if (LIRFillDelaySlots && branch->block()) {
aoqi@0 3553 LIR_Op* prev = inst->at(i - 1);
aoqi@0 3554 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
aoqi@0 3555 // swap previous instruction into delay slot
aoqi@0 3556 inst->at_put(i - 1, op);
aoqi@0 3557 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
aoqi@0 3558 #ifndef PRODUCT
aoqi@0 3559 if (LIRTracePeephole) {
aoqi@0 3560 tty->print_cr("delayed");
aoqi@0 3561 inst->at(i - 1)->print();
aoqi@0 3562 inst->at(i)->print();
aoqi@0 3563 tty->cr();
aoqi@0 3564 }
aoqi@0 3565 #endif
aoqi@0 3566 continue;
aoqi@0 3567 }
aoqi@0 3568 }
aoqi@0 3569
aoqi@0 3570 if (!delay_op) {
aoqi@0 3571 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
aoqi@0 3572 }
aoqi@0 3573 inst->insert_before(i + 1, delay_op);
aoqi@0 3574 break;
aoqi@0 3575 }
aoqi@0 3576 case lir_static_call:
aoqi@0 3577 case lir_virtual_call:
aoqi@0 3578 case lir_icvirtual_call:
aoqi@0 3579 case lir_optvirtual_call:
aoqi@0 3580 case lir_dynamic_call: {
aoqi@0 3581 LIR_Op* prev = inst->at(i - 1);
aoqi@0 3582 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
aoqi@0 3583 (op->code() != lir_virtual_call ||
aoqi@0 3584 !prev->result_opr()->is_single_cpu() ||
aoqi@0 3585 prev->result_opr()->as_register() != O0) &&
aoqi@0 3586 LIR_Assembler::is_single_instruction(prev)) {
aoqi@0 3587 // Only moves without info can be put into the delay slot.
aoqi@0 3588 // Also don't allow the setup of the receiver in the delay
aoqi@0 3589 // slot for vtable calls.
aoqi@0 3590 inst->at_put(i - 1, op);
aoqi@0 3591 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
aoqi@0 3592 #ifndef PRODUCT
aoqi@0 3593 if (LIRTracePeephole) {
aoqi@0 3594 tty->print_cr("delayed");
aoqi@0 3595 inst->at(i - 1)->print();
aoqi@0 3596 inst->at(i)->print();
aoqi@0 3597 tty->cr();
aoqi@0 3598 }
aoqi@0 3599 #endif
aoqi@0 3600 } else {
aoqi@0 3601 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
aoqi@0 3602 inst->insert_before(i + 1, delay_op);
aoqi@0 3603 i++;
aoqi@0 3604 }
aoqi@0 3605
aoqi@0 3606 #if defined(TIERED) && !defined(_LP64)
aoqi@0 3607 // fixup the return value from G1 to O0/O1 for long returns.
aoqi@0 3608 // It's done here instead of in LIRGenerator because there's
aoqi@0 3609 // such a mismatch between the single reg and double reg
aoqi@0 3610 // calling convention.
aoqi@0 3611 LIR_OpJavaCall* callop = op->as_OpJavaCall();
aoqi@0 3612 if (callop->result_opr() == FrameMap::out_long_opr) {
aoqi@0 3613 LIR_OpJavaCall* call;
aoqi@0 3614 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
aoqi@0 3615 for (int a = 0; a < arguments->length(); a++) {
aoqi@0 3616 arguments[a] = callop->arguments()[a];
aoqi@0 3617 }
aoqi@0 3618 if (op->code() == lir_virtual_call) {
aoqi@0 3619 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
aoqi@0 3620 callop->vtable_offset(), arguments, callop->info());
aoqi@0 3621 } else {
aoqi@0 3622 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
aoqi@0 3623 callop->addr(), arguments, callop->info());
aoqi@0 3624 }
aoqi@0 3625 inst->at_put(i - 1, call);
aoqi@0 3626 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
aoqi@0 3627 T_LONG, lir_patch_none, NULL));
aoqi@0 3628 }
aoqi@0 3629 #endif
aoqi@0 3630 break;
aoqi@0 3631 }
aoqi@0 3632 }
aoqi@0 3633 }
aoqi@0 3634 }
aoqi@0 3635
aoqi@0 3636 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
aoqi@0 3637 LIR_Address* addr = src->as_address_ptr();
aoqi@0 3638
aoqi@0 3639 assert(data == dest, "swap uses only 2 operands");
aoqi@0 3640 assert (code == lir_xchg, "no xadd on sparc");
aoqi@0 3641
aoqi@0 3642 if (data->type() == T_INT) {
aoqi@0 3643 __ swap(as_Address(addr), data->as_register());
aoqi@0 3644 } else if (data->is_oop()) {
aoqi@0 3645 Register obj = data->as_register();
aoqi@0 3646 Register narrow = tmp->as_register();
aoqi@0 3647 #ifdef _LP64
aoqi@0 3648 assert(UseCompressedOops, "swap is 32bit only");
aoqi@0 3649 __ encode_heap_oop(obj, narrow);
aoqi@0 3650 __ swap(as_Address(addr), narrow);
aoqi@0 3651 __ decode_heap_oop(narrow, obj);
aoqi@0 3652 #else
aoqi@0 3653 __ swap(as_Address(addr), obj);
aoqi@0 3654 #endif
aoqi@0 3655 } else {
aoqi@0 3656 ShouldNotReachHere();
aoqi@0 3657 }
aoqi@0 3658 }
aoqi@0 3659
aoqi@0 3660 #undef __

mercurial