src/cpu/ppc/vm/sharedRuntime_ppc.cpp

Thu, 24 May 2018 17:06:56 +0800

author
aoqi
date
Thu, 24 May 2018 17:06:56 +0800
changeset 8604
04d83ba48607
parent 8182
e9e252c83b2b
parent 6876
710a3c8b516e
child 9041
95a08233f46c
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * Copyright 2012, 2014 SAP AG. All rights reserved.
aoqi@0 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 5 *
aoqi@0 6 * This code is free software; you can redistribute it and/or modify it
aoqi@0 7 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 8 * published by the Free Software Foundation.
aoqi@0 9 *
aoqi@0 10 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 13 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 14 * accompanied this code).
aoqi@0 15 *
aoqi@0 16 * You should have received a copy of the GNU General Public License version
aoqi@0 17 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 19 *
aoqi@0 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 21 * or visit www.oracle.com if you need additional information or have any
aoqi@0 22 * questions.
aoqi@0 23 *
aoqi@0 24 */
aoqi@0 25
aoqi@0 26 #include "precompiled.hpp"
aoqi@0 27 #include "asm/macroAssembler.inline.hpp"
aoqi@0 28 #include "code/debugInfoRec.hpp"
aoqi@0 29 #include "code/icBuffer.hpp"
aoqi@0 30 #include "code/vtableStubs.hpp"
aoqi@0 31 #include "interpreter/interpreter.hpp"
aoqi@0 32 #include "oops/compiledICHolder.hpp"
aoqi@0 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
aoqi@0 34 #include "runtime/sharedRuntime.hpp"
aoqi@0 35 #include "runtime/vframeArray.hpp"
aoqi@0 36 #include "vmreg_ppc.inline.hpp"
aoqi@0 37 #include "adfiles/ad_ppc_64.hpp"
aoqi@0 38 #ifdef COMPILER1
aoqi@0 39 #include "c1/c1_Runtime1.hpp"
aoqi@0 40 #endif
aoqi@0 41 #ifdef COMPILER2
aoqi@0 42 #include "opto/runtime.hpp"
aoqi@0 43 #endif
aoqi@0 44
aoqi@0 45 #define __ masm->
aoqi@0 46
aoqi@0 47 #ifdef PRODUCT
aoqi@0 48 #define BLOCK_COMMENT(str) // nothing
aoqi@0 49 #else
aoqi@0 50 #define BLOCK_COMMENT(str) __ block_comment(str)
aoqi@0 51 #endif
aoqi@0 52
aoqi@0 53 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
aoqi@0 54
aoqi@0 55
aoqi@0 56 class RegisterSaver {
aoqi@0 57 // Used for saving volatile registers.
aoqi@0 58 public:
aoqi@0 59
aoqi@0 60 // Support different return pc locations.
aoqi@0 61 enum ReturnPCLocation {
aoqi@0 62 return_pc_is_lr,
aoqi@0 63 return_pc_is_r4,
aoqi@0 64 return_pc_is_thread_saved_exception_pc
aoqi@0 65 };
aoqi@0 66
aoqi@0 67 static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
aoqi@0 68 int* out_frame_size_in_bytes,
aoqi@0 69 bool generate_oop_map,
aoqi@0 70 int return_pc_adjustment,
aoqi@0 71 ReturnPCLocation return_pc_location);
aoqi@0 72 static void restore_live_registers_and_pop_frame(MacroAssembler* masm,
aoqi@0 73 int frame_size_in_bytes,
aoqi@0 74 bool restore_ctr);
aoqi@0 75
aoqi@0 76 static void push_frame_and_save_argument_registers(MacroAssembler* masm,
aoqi@0 77 Register r_temp,
aoqi@0 78 int frame_size,
aoqi@0 79 int total_args,
aoqi@0 80 const VMRegPair *regs, const VMRegPair *regs2 = NULL);
aoqi@0 81 static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
aoqi@0 82 int frame_size,
aoqi@0 83 int total_args,
aoqi@0 84 const VMRegPair *regs, const VMRegPair *regs2 = NULL);
aoqi@0 85
aoqi@0 86 // During deoptimization only the result registers need to be restored
aoqi@0 87 // all the other values have already been extracted.
aoqi@0 88 static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
aoqi@0 89
aoqi@0 90 // Constants and data structures:
aoqi@0 91
aoqi@0 92 typedef enum {
aoqi@0 93 int_reg = 0,
aoqi@0 94 float_reg = 1,
aoqi@0 95 special_reg = 2
aoqi@0 96 } RegisterType;
aoqi@0 97
aoqi@0 98 typedef enum {
aoqi@0 99 reg_size = 8,
aoqi@0 100 half_reg_size = reg_size / 2,
aoqi@0 101 } RegisterConstants;
aoqi@0 102
aoqi@0 103 typedef struct {
aoqi@0 104 RegisterType reg_type;
aoqi@0 105 int reg_num;
aoqi@0 106 VMReg vmreg;
aoqi@0 107 } LiveRegType;
aoqi@0 108 };
aoqi@0 109
aoqi@0 110
aoqi@0 111 #define RegisterSaver_LiveSpecialReg(regname) \
aoqi@0 112 { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
aoqi@0 113
aoqi@0 114 #define RegisterSaver_LiveIntReg(regname) \
aoqi@0 115 { RegisterSaver::int_reg, regname->encoding(), regname->as_VMReg() }
aoqi@0 116
aoqi@0 117 #define RegisterSaver_LiveFloatReg(regname) \
aoqi@0 118 { RegisterSaver::float_reg, regname->encoding(), regname->as_VMReg() }
aoqi@0 119
aoqi@0 120 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
aoqi@0 121 // Live registers which get spilled to the stack. Register
aoqi@0 122 // positions in this array correspond directly to the stack layout.
aoqi@0 123
aoqi@0 124 //
aoqi@0 125 // live special registers:
aoqi@0 126 //
aoqi@0 127 RegisterSaver_LiveSpecialReg(SR_CTR),
aoqi@0 128 //
aoqi@0 129 // live float registers:
aoqi@0 130 //
aoqi@0 131 RegisterSaver_LiveFloatReg( F0 ),
aoqi@0 132 RegisterSaver_LiveFloatReg( F1 ),
aoqi@0 133 RegisterSaver_LiveFloatReg( F2 ),
aoqi@0 134 RegisterSaver_LiveFloatReg( F3 ),
aoqi@0 135 RegisterSaver_LiveFloatReg( F4 ),
aoqi@0 136 RegisterSaver_LiveFloatReg( F5 ),
aoqi@0 137 RegisterSaver_LiveFloatReg( F6 ),
aoqi@0 138 RegisterSaver_LiveFloatReg( F7 ),
aoqi@0 139 RegisterSaver_LiveFloatReg( F8 ),
aoqi@0 140 RegisterSaver_LiveFloatReg( F9 ),
aoqi@0 141 RegisterSaver_LiveFloatReg( F10 ),
aoqi@0 142 RegisterSaver_LiveFloatReg( F11 ),
aoqi@0 143 RegisterSaver_LiveFloatReg( F12 ),
aoqi@0 144 RegisterSaver_LiveFloatReg( F13 ),
aoqi@0 145 RegisterSaver_LiveFloatReg( F14 ),
aoqi@0 146 RegisterSaver_LiveFloatReg( F15 ),
aoqi@0 147 RegisterSaver_LiveFloatReg( F16 ),
aoqi@0 148 RegisterSaver_LiveFloatReg( F17 ),
aoqi@0 149 RegisterSaver_LiveFloatReg( F18 ),
aoqi@0 150 RegisterSaver_LiveFloatReg( F19 ),
aoqi@0 151 RegisterSaver_LiveFloatReg( F20 ),
aoqi@0 152 RegisterSaver_LiveFloatReg( F21 ),
aoqi@0 153 RegisterSaver_LiveFloatReg( F22 ),
aoqi@0 154 RegisterSaver_LiveFloatReg( F23 ),
aoqi@0 155 RegisterSaver_LiveFloatReg( F24 ),
aoqi@0 156 RegisterSaver_LiveFloatReg( F25 ),
aoqi@0 157 RegisterSaver_LiveFloatReg( F26 ),
aoqi@0 158 RegisterSaver_LiveFloatReg( F27 ),
aoqi@0 159 RegisterSaver_LiveFloatReg( F28 ),
aoqi@0 160 RegisterSaver_LiveFloatReg( F29 ),
aoqi@0 161 RegisterSaver_LiveFloatReg( F30 ),
aoqi@0 162 RegisterSaver_LiveFloatReg( F31 ),
aoqi@0 163 //
aoqi@0 164 // live integer registers:
aoqi@0 165 //
aoqi@0 166 RegisterSaver_LiveIntReg( R0 ),
aoqi@0 167 //RegisterSaver_LiveIntReg( R1 ), // stack pointer
aoqi@0 168 RegisterSaver_LiveIntReg( R2 ),
aoqi@0 169 RegisterSaver_LiveIntReg( R3 ),
aoqi@0 170 RegisterSaver_LiveIntReg( R4 ),
aoqi@0 171 RegisterSaver_LiveIntReg( R5 ),
aoqi@0 172 RegisterSaver_LiveIntReg( R6 ),
aoqi@0 173 RegisterSaver_LiveIntReg( R7 ),
aoqi@0 174 RegisterSaver_LiveIntReg( R8 ),
aoqi@0 175 RegisterSaver_LiveIntReg( R9 ),
aoqi@0 176 RegisterSaver_LiveIntReg( R10 ),
aoqi@0 177 RegisterSaver_LiveIntReg( R11 ),
aoqi@0 178 RegisterSaver_LiveIntReg( R12 ),
aoqi@0 179 //RegisterSaver_LiveIntReg( R13 ), // system thread id
aoqi@0 180 RegisterSaver_LiveIntReg( R14 ),
aoqi@0 181 RegisterSaver_LiveIntReg( R15 ),
aoqi@0 182 RegisterSaver_LiveIntReg( R16 ),
aoqi@0 183 RegisterSaver_LiveIntReg( R17 ),
aoqi@0 184 RegisterSaver_LiveIntReg( R18 ),
aoqi@0 185 RegisterSaver_LiveIntReg( R19 ),
aoqi@0 186 RegisterSaver_LiveIntReg( R20 ),
aoqi@0 187 RegisterSaver_LiveIntReg( R21 ),
aoqi@0 188 RegisterSaver_LiveIntReg( R22 ),
aoqi@0 189 RegisterSaver_LiveIntReg( R23 ),
aoqi@0 190 RegisterSaver_LiveIntReg( R24 ),
aoqi@0 191 RegisterSaver_LiveIntReg( R25 ),
aoqi@0 192 RegisterSaver_LiveIntReg( R26 ),
aoqi@0 193 RegisterSaver_LiveIntReg( R27 ),
aoqi@0 194 RegisterSaver_LiveIntReg( R28 ),
aoqi@0 195 RegisterSaver_LiveIntReg( R29 ),
aoqi@0 196 RegisterSaver_LiveIntReg( R31 ),
aoqi@0 197 RegisterSaver_LiveIntReg( R30 ), // r30 must be the last register
aoqi@0 198 };
aoqi@0 199
aoqi@0 200 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
aoqi@0 201 int* out_frame_size_in_bytes,
aoqi@0 202 bool generate_oop_map,
aoqi@0 203 int return_pc_adjustment,
aoqi@0 204 ReturnPCLocation return_pc_location) {
aoqi@0 205 // Push an abi_reg_args-frame and store all registers which may be live.
aoqi@0 206 // If requested, create an OopMap: Record volatile registers as
aoqi@0 207 // callee-save values in an OopMap so their save locations will be
aoqi@0 208 // propagated to the RegisterMap of the caller frame during
aoqi@0 209 // StackFrameStream construction (needed for deoptimization; see
aoqi@0 210 // compiledVFrame::create_stack_value).
aoqi@0 211 // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
aoqi@0 212
aoqi@0 213 int i;
aoqi@0 214 int offset;
aoqi@0 215
aoqi@0 216 // calcualte frame size
aoqi@0 217 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
aoqi@0 218 sizeof(RegisterSaver::LiveRegType);
aoqi@0 219 const int register_save_size = regstosave_num * reg_size;
aoqi@0 220 const int frame_size_in_bytes = round_to(register_save_size, frame::alignment_in_bytes)
aoqi@0 221 + frame::abi_reg_args_size;
aoqi@0 222 *out_frame_size_in_bytes = frame_size_in_bytes;
aoqi@0 223 const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
aoqi@0 224 const int register_save_offset = frame_size_in_bytes - register_save_size;
aoqi@0 225
aoqi@0 226 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
aoqi@0 227 OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
aoqi@0 228
aoqi@0 229 BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
aoqi@0 230
aoqi@0 231 // Save r30 in the last slot of the not yet pushed frame so that we
aoqi@0 232 // can use it as scratch reg.
aoqi@0 233 __ std(R30, -reg_size, R1_SP);
aoqi@0 234 assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
aoqi@0 235 "consistency check");
aoqi@0 236
aoqi@0 237 // save the flags
aoqi@0 238 // Do the save_LR_CR by hand and adjust the return pc if requested.
aoqi@0 239 __ mfcr(R30);
aoqi@0 240 __ std(R30, _abi(cr), R1_SP);
aoqi@0 241 switch (return_pc_location) {
aoqi@0 242 case return_pc_is_lr: __ mflr(R30); break;
aoqi@0 243 case return_pc_is_r4: __ mr(R30, R4); break;
aoqi@0 244 case return_pc_is_thread_saved_exception_pc:
aoqi@0 245 __ ld(R30, thread_(saved_exception_pc)); break;
aoqi@0 246 default: ShouldNotReachHere();
aoqi@0 247 }
aoqi@0 248 if (return_pc_adjustment != 0)
aoqi@0 249 __ addi(R30, R30, return_pc_adjustment);
aoqi@0 250 __ std(R30, _abi(lr), R1_SP);
aoqi@0 251
aoqi@0 252 // push a new frame
aoqi@0 253 __ push_frame(frame_size_in_bytes, R30);
aoqi@0 254
aoqi@0 255 // save all registers (ints and floats)
aoqi@0 256 offset = register_save_offset;
aoqi@0 257 for (int i = 0; i < regstosave_num; i++) {
aoqi@0 258 int reg_num = RegisterSaver_LiveRegs[i].reg_num;
aoqi@0 259 int reg_type = RegisterSaver_LiveRegs[i].reg_type;
aoqi@0 260
aoqi@0 261 switch (reg_type) {
aoqi@0 262 case RegisterSaver::int_reg: {
aoqi@0 263 if (reg_num != 30) { // We spilled R30 right at the beginning.
aoqi@0 264 __ std(as_Register(reg_num), offset, R1_SP);
aoqi@0 265 }
aoqi@0 266 break;
aoqi@0 267 }
aoqi@0 268 case RegisterSaver::float_reg: {
aoqi@0 269 __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
aoqi@0 270 break;
aoqi@0 271 }
aoqi@0 272 case RegisterSaver::special_reg: {
aoqi@0 273 if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
aoqi@0 274 __ mfctr(R30);
aoqi@0 275 __ std(R30, offset, R1_SP);
aoqi@0 276 } else {
aoqi@0 277 Unimplemented();
aoqi@0 278 }
aoqi@0 279 break;
aoqi@0 280 }
aoqi@0 281 default:
aoqi@0 282 ShouldNotReachHere();
aoqi@0 283 }
aoqi@0 284
aoqi@0 285 if (generate_oop_map) {
aoqi@0 286 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
aoqi@0 287 RegisterSaver_LiveRegs[i].vmreg);
aoqi@0 288 map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
aoqi@0 289 RegisterSaver_LiveRegs[i].vmreg->next());
aoqi@0 290 }
aoqi@0 291 offset += reg_size;
aoqi@0 292 }
aoqi@0 293
aoqi@0 294 BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
aoqi@0 295
aoqi@0 296 // And we're done.
aoqi@0 297 return map;
aoqi@0 298 }
aoqi@0 299
aoqi@0 300
aoqi@0 301 // Pop the current frame and restore all the registers that we
aoqi@0 302 // saved.
aoqi@0 303 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
aoqi@0 304 int frame_size_in_bytes,
aoqi@0 305 bool restore_ctr) {
aoqi@0 306 int i;
aoqi@0 307 int offset;
aoqi@0 308 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
aoqi@0 309 sizeof(RegisterSaver::LiveRegType);
aoqi@0 310 const int register_save_size = regstosave_num * reg_size;
aoqi@0 311 const int register_save_offset = frame_size_in_bytes - register_save_size;
aoqi@0 312
aoqi@0 313 BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
aoqi@0 314
aoqi@0 315 // restore all registers (ints and floats)
aoqi@0 316 offset = register_save_offset;
aoqi@0 317 for (int i = 0; i < regstosave_num; i++) {
aoqi@0 318 int reg_num = RegisterSaver_LiveRegs[i].reg_num;
aoqi@0 319 int reg_type = RegisterSaver_LiveRegs[i].reg_type;
aoqi@0 320
aoqi@0 321 switch (reg_type) {
aoqi@0 322 case RegisterSaver::int_reg: {
aoqi@0 323 if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
aoqi@0 324 __ ld(as_Register(reg_num), offset, R1_SP);
aoqi@0 325 break;
aoqi@0 326 }
aoqi@0 327 case RegisterSaver::float_reg: {
aoqi@0 328 __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
aoqi@0 329 break;
aoqi@0 330 }
aoqi@0 331 case RegisterSaver::special_reg: {
aoqi@0 332 if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
aoqi@0 333 if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
aoqi@0 334 __ ld(R30, offset, R1_SP);
aoqi@0 335 __ mtctr(R30);
aoqi@0 336 }
aoqi@0 337 } else {
aoqi@0 338 Unimplemented();
aoqi@0 339 }
aoqi@0 340 break;
aoqi@0 341 }
aoqi@0 342 default:
aoqi@0 343 ShouldNotReachHere();
aoqi@0 344 }
aoqi@0 345 offset += reg_size;
aoqi@0 346 }
aoqi@0 347
aoqi@0 348 // pop the frame
aoqi@0 349 __ pop_frame();
aoqi@0 350
aoqi@0 351 // restore the flags
aoqi@0 352 __ restore_LR_CR(R30);
aoqi@0 353
aoqi@0 354 // restore scratch register's value
aoqi@0 355 __ ld(R30, -reg_size, R1_SP);
aoqi@0 356
aoqi@0 357 BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
aoqi@0 358 }
aoqi@0 359
aoqi@0 360 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
aoqi@0 361 int frame_size,int total_args, const VMRegPair *regs,
aoqi@0 362 const VMRegPair *regs2) {
aoqi@0 363 __ push_frame(frame_size, r_temp);
aoqi@0 364 int st_off = frame_size - wordSize;
aoqi@0 365 for (int i = 0; i < total_args; i++) {
aoqi@0 366 VMReg r_1 = regs[i].first();
aoqi@0 367 VMReg r_2 = regs[i].second();
aoqi@0 368 if (!r_1->is_valid()) {
aoqi@0 369 assert(!r_2->is_valid(), "");
aoqi@0 370 continue;
aoqi@0 371 }
aoqi@0 372 if (r_1->is_Register()) {
aoqi@0 373 Register r = r_1->as_Register();
aoqi@0 374 __ std(r, st_off, R1_SP);
aoqi@0 375 st_off -= wordSize;
aoqi@0 376 } else if (r_1->is_FloatRegister()) {
aoqi@0 377 FloatRegister f = r_1->as_FloatRegister();
aoqi@0 378 __ stfd(f, st_off, R1_SP);
aoqi@0 379 st_off -= wordSize;
aoqi@0 380 }
aoqi@0 381 }
aoqi@0 382 if (regs2 != NULL) {
aoqi@0 383 for (int i = 0; i < total_args; i++) {
aoqi@0 384 VMReg r_1 = regs2[i].first();
aoqi@0 385 VMReg r_2 = regs2[i].second();
aoqi@0 386 if (!r_1->is_valid()) {
aoqi@0 387 assert(!r_2->is_valid(), "");
aoqi@0 388 continue;
aoqi@0 389 }
aoqi@0 390 if (r_1->is_Register()) {
aoqi@0 391 Register r = r_1->as_Register();
aoqi@0 392 __ std(r, st_off, R1_SP);
aoqi@0 393 st_off -= wordSize;
aoqi@0 394 } else if (r_1->is_FloatRegister()) {
aoqi@0 395 FloatRegister f = r_1->as_FloatRegister();
aoqi@0 396 __ stfd(f, st_off, R1_SP);
aoqi@0 397 st_off -= wordSize;
aoqi@0 398 }
aoqi@0 399 }
aoqi@0 400 }
aoqi@0 401 }
aoqi@0 402
aoqi@0 403 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
aoqi@0 404 int total_args, const VMRegPair *regs,
aoqi@0 405 const VMRegPair *regs2) {
aoqi@0 406 int st_off = frame_size - wordSize;
aoqi@0 407 for (int i = 0; i < total_args; i++) {
aoqi@0 408 VMReg r_1 = regs[i].first();
aoqi@0 409 VMReg r_2 = regs[i].second();
aoqi@0 410 if (r_1->is_Register()) {
aoqi@0 411 Register r = r_1->as_Register();
aoqi@0 412 __ ld(r, st_off, R1_SP);
aoqi@0 413 st_off -= wordSize;
aoqi@0 414 } else if (r_1->is_FloatRegister()) {
aoqi@0 415 FloatRegister f = r_1->as_FloatRegister();
aoqi@0 416 __ lfd(f, st_off, R1_SP);
aoqi@0 417 st_off -= wordSize;
aoqi@0 418 }
aoqi@0 419 }
aoqi@0 420 if (regs2 != NULL)
aoqi@0 421 for (int i = 0; i < total_args; i++) {
aoqi@0 422 VMReg r_1 = regs2[i].first();
aoqi@0 423 VMReg r_2 = regs2[i].second();
aoqi@0 424 if (r_1->is_Register()) {
aoqi@0 425 Register r = r_1->as_Register();
aoqi@0 426 __ ld(r, st_off, R1_SP);
aoqi@0 427 st_off -= wordSize;
aoqi@0 428 } else if (r_1->is_FloatRegister()) {
aoqi@0 429 FloatRegister f = r_1->as_FloatRegister();
aoqi@0 430 __ lfd(f, st_off, R1_SP);
aoqi@0 431 st_off -= wordSize;
aoqi@0 432 }
aoqi@0 433 }
aoqi@0 434 __ pop_frame();
aoqi@0 435 }
aoqi@0 436
aoqi@0 437 // Restore the registers that might be holding a result.
aoqi@0 438 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
aoqi@0 439 int i;
aoqi@0 440 int offset;
aoqi@0 441 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
aoqi@0 442 sizeof(RegisterSaver::LiveRegType);
aoqi@0 443 const int register_save_size = regstosave_num * reg_size;
aoqi@0 444 const int register_save_offset = frame_size_in_bytes - register_save_size;
aoqi@0 445
aoqi@0 446 // restore all result registers (ints and floats)
aoqi@0 447 offset = register_save_offset;
aoqi@0 448 for (int i = 0; i < regstosave_num; i++) {
aoqi@0 449 int reg_num = RegisterSaver_LiveRegs[i].reg_num;
aoqi@0 450 int reg_type = RegisterSaver_LiveRegs[i].reg_type;
aoqi@0 451 switch (reg_type) {
aoqi@0 452 case RegisterSaver::int_reg: {
aoqi@0 453 if (as_Register(reg_num)==R3_RET) // int result_reg
aoqi@0 454 __ ld(as_Register(reg_num), offset, R1_SP);
aoqi@0 455 break;
aoqi@0 456 }
aoqi@0 457 case RegisterSaver::float_reg: {
aoqi@0 458 if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
aoqi@0 459 __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
aoqi@0 460 break;
aoqi@0 461 }
aoqi@0 462 case RegisterSaver::special_reg: {
aoqi@0 463 // Special registers don't hold a result.
aoqi@0 464 break;
aoqi@0 465 }
aoqi@0 466 default:
aoqi@0 467 ShouldNotReachHere();
aoqi@0 468 }
aoqi@0 469 offset += reg_size;
aoqi@0 470 }
aoqi@0 471 }
aoqi@0 472
aoqi@0 473 // Is vector's size (in bytes) bigger than a size saved by default?
aoqi@0 474 bool SharedRuntime::is_wide_vector(int size) {
aoqi@0 475 ResourceMark rm;
aoqi@0 476 // Note, MaxVectorSize == 8 on PPC64.
aoqi@0 477 assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
aoqi@0 478 return size > 8;
aoqi@0 479 }
aoqi@0 480 #ifdef COMPILER2
aoqi@0 481 static int reg2slot(VMReg r) {
aoqi@0 482 return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
aoqi@0 483 }
aoqi@0 484
aoqi@0 485 static int reg2offset(VMReg r) {
aoqi@0 486 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
aoqi@0 487 }
aoqi@0 488 #endif
aoqi@0 489
aoqi@0 490 // ---------------------------------------------------------------------------
aoqi@0 491 // Read the array of BasicTypes from a signature, and compute where the
aoqi@0 492 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
aoqi@0 493 // quantities. Values less than VMRegImpl::stack0 are registers, those above
aoqi@0 494 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
aoqi@0 495 // as framesizes are fixed.
aoqi@0 496 // VMRegImpl::stack0 refers to the first slot 0(sp).
aoqi@0 497 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
aoqi@0 498 // up to RegisterImpl::number_of_registers) are the 64-bit
aoqi@0 499 // integer registers.
aoqi@0 500
aoqi@0 501 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
aoqi@0 502 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
aoqi@0 503 // units regardless of build. Of course for i486 there is no 64 bit build
aoqi@0 504
aoqi@0 505 // The Java calling convention is a "shifted" version of the C ABI.
aoqi@0 506 // By skipping the first C ABI register we can call non-static jni methods
aoqi@0 507 // with small numbers of arguments without having to shuffle the arguments
aoqi@0 508 // at all. Since we control the java ABI we ought to at least get some
aoqi@0 509 // advantage out of it.
aoqi@0 510
aoqi@0 511 const VMReg java_iarg_reg[8] = {
aoqi@0 512 R3->as_VMReg(),
aoqi@0 513 R4->as_VMReg(),
aoqi@0 514 R5->as_VMReg(),
aoqi@0 515 R6->as_VMReg(),
aoqi@0 516 R7->as_VMReg(),
aoqi@0 517 R8->as_VMReg(),
aoqi@0 518 R9->as_VMReg(),
aoqi@0 519 R10->as_VMReg()
aoqi@0 520 };
aoqi@0 521
aoqi@0 522 const VMReg java_farg_reg[13] = {
aoqi@0 523 F1->as_VMReg(),
aoqi@0 524 F2->as_VMReg(),
aoqi@0 525 F3->as_VMReg(),
aoqi@0 526 F4->as_VMReg(),
aoqi@0 527 F5->as_VMReg(),
aoqi@0 528 F6->as_VMReg(),
aoqi@0 529 F7->as_VMReg(),
aoqi@0 530 F8->as_VMReg(),
aoqi@0 531 F9->as_VMReg(),
aoqi@0 532 F10->as_VMReg(),
aoqi@0 533 F11->as_VMReg(),
aoqi@0 534 F12->as_VMReg(),
aoqi@0 535 F13->as_VMReg()
aoqi@0 536 };
aoqi@0 537
aoqi@0 538 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
aoqi@0 539 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
aoqi@0 540
aoqi@0 541 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
aoqi@0 542 VMRegPair *regs,
aoqi@0 543 int total_args_passed,
aoqi@0 544 int is_outgoing) {
aoqi@0 545 // C2c calling conventions for compiled-compiled calls.
aoqi@0 546 // Put 8 ints/longs into registers _AND_ 13 float/doubles into
aoqi@0 547 // registers _AND_ put the rest on the stack.
aoqi@0 548
aoqi@0 549 const int inc_stk_for_intfloat = 1; // 1 slots for ints and floats
aoqi@0 550 const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
aoqi@0 551
aoqi@0 552 int i;
aoqi@0 553 VMReg reg;
aoqi@0 554 int stk = 0;
aoqi@0 555 int ireg = 0;
aoqi@0 556 int freg = 0;
aoqi@0 557
aoqi@0 558 // We put the first 8 arguments into registers and the rest on the
aoqi@0 559 // stack, float arguments are already in their argument registers
aoqi@0 560 // due to c2c calling conventions (see calling_convention).
aoqi@0 561 for (int i = 0; i < total_args_passed; ++i) {
aoqi@0 562 switch(sig_bt[i]) {
aoqi@0 563 case T_BOOLEAN:
aoqi@0 564 case T_CHAR:
aoqi@0 565 case T_BYTE:
aoqi@0 566 case T_SHORT:
aoqi@0 567 case T_INT:
aoqi@0 568 if (ireg < num_java_iarg_registers) {
aoqi@0 569 // Put int/ptr in register
aoqi@0 570 reg = java_iarg_reg[ireg];
aoqi@0 571 ++ireg;
aoqi@0 572 } else {
aoqi@0 573 // Put int/ptr on stack.
aoqi@0 574 reg = VMRegImpl::stack2reg(stk);
aoqi@0 575 stk += inc_stk_for_intfloat;
aoqi@0 576 }
aoqi@0 577 regs[i].set1(reg);
aoqi@0 578 break;
aoqi@0 579 case T_LONG:
aoqi@0 580 assert(sig_bt[i+1] == T_VOID, "expecting half");
aoqi@0 581 if (ireg < num_java_iarg_registers) {
aoqi@0 582 // Put long in register.
aoqi@0 583 reg = java_iarg_reg[ireg];
aoqi@0 584 ++ireg;
aoqi@0 585 } else {
aoqi@0 586 // Put long on stack. They must be aligned to 2 slots.
aoqi@0 587 if (stk & 0x1) ++stk;
aoqi@0 588 reg = VMRegImpl::stack2reg(stk);
aoqi@0 589 stk += inc_stk_for_longdouble;
aoqi@0 590 }
aoqi@0 591 regs[i].set2(reg);
aoqi@0 592 break;
aoqi@0 593 case T_OBJECT:
aoqi@0 594 case T_ARRAY:
aoqi@0 595 case T_ADDRESS:
aoqi@0 596 if (ireg < num_java_iarg_registers) {
aoqi@0 597 // Put ptr in register.
aoqi@0 598 reg = java_iarg_reg[ireg];
aoqi@0 599 ++ireg;
aoqi@0 600 } else {
aoqi@0 601 // Put ptr on stack. Objects must be aligned to 2 slots too,
aoqi@0 602 // because "64-bit pointers record oop-ishness on 2 aligned
aoqi@0 603 // adjacent registers." (see OopFlow::build_oop_map).
aoqi@0 604 if (stk & 0x1) ++stk;
aoqi@0 605 reg = VMRegImpl::stack2reg(stk);
aoqi@0 606 stk += inc_stk_for_longdouble;
aoqi@0 607 }
aoqi@0 608 regs[i].set2(reg);
aoqi@0 609 break;
aoqi@0 610 case T_FLOAT:
aoqi@0 611 if (freg < num_java_farg_registers) {
aoqi@0 612 // Put float in register.
aoqi@0 613 reg = java_farg_reg[freg];
aoqi@0 614 ++freg;
aoqi@0 615 } else {
aoqi@0 616 // Put float on stack.
aoqi@0 617 reg = VMRegImpl::stack2reg(stk);
aoqi@0 618 stk += inc_stk_for_intfloat;
aoqi@0 619 }
aoqi@0 620 regs[i].set1(reg);
aoqi@0 621 break;
aoqi@0 622 case T_DOUBLE:
aoqi@0 623 assert(sig_bt[i+1] == T_VOID, "expecting half");
aoqi@0 624 if (freg < num_java_farg_registers) {
aoqi@0 625 // Put double in register.
aoqi@0 626 reg = java_farg_reg[freg];
aoqi@0 627 ++freg;
aoqi@0 628 } else {
aoqi@0 629 // Put double on stack. They must be aligned to 2 slots.
aoqi@0 630 if (stk & 0x1) ++stk;
aoqi@0 631 reg = VMRegImpl::stack2reg(stk);
aoqi@0 632 stk += inc_stk_for_longdouble;
aoqi@0 633 }
aoqi@0 634 regs[i].set2(reg);
aoqi@0 635 break;
aoqi@0 636 case T_VOID:
aoqi@0 637 // Do not count halves.
aoqi@0 638 regs[i].set_bad();
aoqi@0 639 break;
aoqi@0 640 default:
aoqi@0 641 ShouldNotReachHere();
aoqi@0 642 }
aoqi@0 643 }
aoqi@0 644 return round_to(stk, 2);
aoqi@0 645 }
aoqi@0 646
aoqi@0 647 #ifdef COMPILER2
aoqi@0 648 // Calling convention for calling C code.
aoqi@0 649 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
aoqi@0 650 VMRegPair *regs,
aoqi@0 651 VMRegPair *regs2,
aoqi@0 652 int total_args_passed) {
aoqi@0 653 // Calling conventions for C runtime calls and calls to JNI native methods.
aoqi@0 654 //
aoqi@0 655 // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
aoqi@0 656 // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
aoqi@0 657 // the first 13 flt/dbl's in the first 13 fp regs but additionally
aoqi@0 658 // copy flt/dbl to the stack if they are beyond the 8th argument.
aoqi@0 659
aoqi@0 660 const VMReg iarg_reg[8] = {
aoqi@0 661 R3->as_VMReg(),
aoqi@0 662 R4->as_VMReg(),
aoqi@0 663 R5->as_VMReg(),
aoqi@0 664 R6->as_VMReg(),
aoqi@0 665 R7->as_VMReg(),
aoqi@0 666 R8->as_VMReg(),
aoqi@0 667 R9->as_VMReg(),
aoqi@0 668 R10->as_VMReg()
aoqi@0 669 };
aoqi@0 670
aoqi@0 671 const VMReg farg_reg[13] = {
aoqi@0 672 F1->as_VMReg(),
aoqi@0 673 F2->as_VMReg(),
aoqi@0 674 F3->as_VMReg(),
aoqi@0 675 F4->as_VMReg(),
aoqi@0 676 F5->as_VMReg(),
aoqi@0 677 F6->as_VMReg(),
aoqi@0 678 F7->as_VMReg(),
aoqi@0 679 F8->as_VMReg(),
aoqi@0 680 F9->as_VMReg(),
aoqi@0 681 F10->as_VMReg(),
aoqi@0 682 F11->as_VMReg(),
aoqi@0 683 F12->as_VMReg(),
aoqi@0 684 F13->as_VMReg()
aoqi@0 685 };
aoqi@0 686
aoqi@0 687 // Check calling conventions consistency.
aoqi@0 688 assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
aoqi@0 689 sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
aoqi@0 690 "consistency");
aoqi@0 691
aoqi@0 692 // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
aoqi@0 693 // 2 such slots, like 64 bit values do.
aoqi@0 694 const int inc_stk_for_intfloat = 2; // 2 slots for ints and floats
aoqi@0 695 const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
aoqi@0 696
aoqi@0 697 int i;
aoqi@0 698 VMReg reg;
aoqi@0 699 // Leave room for C-compatible ABI_REG_ARGS.
aoqi@0 700 int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
aoqi@0 701 int arg = 0;
aoqi@0 702 int freg = 0;
aoqi@0 703
aoqi@0 704 // Avoid passing C arguments in the wrong stack slots.
aoqi@0 705 #if defined(ABI_ELFv2)
aoqi@0 706 assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
aoqi@0 707 "passing C arguments in wrong stack slots");
aoqi@0 708 #else
aoqi@0 709 assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
aoqi@0 710 "passing C arguments in wrong stack slots");
aoqi@0 711 #endif
aoqi@0 712 // We fill-out regs AND regs2 if an argument must be passed in a
aoqi@0 713 // register AND in a stack slot. If regs2 is NULL in such a
aoqi@0 714 // situation, we bail-out with a fatal error.
aoqi@0 715 for (int i = 0; i < total_args_passed; ++i, ++arg) {
aoqi@0 716 // Initialize regs2 to BAD.
aoqi@0 717 if (regs2 != NULL) regs2[i].set_bad();
aoqi@0 718
aoqi@0 719 switch(sig_bt[i]) {
aoqi@0 720
aoqi@0 721 //
aoqi@0 722 // If arguments 0-7 are integers, they are passed in integer registers.
aoqi@0 723 // Argument i is placed in iarg_reg[i].
aoqi@0 724 //
aoqi@0 725 case T_BOOLEAN:
aoqi@0 726 case T_CHAR:
aoqi@0 727 case T_BYTE:
aoqi@0 728 case T_SHORT:
aoqi@0 729 case T_INT:
aoqi@0 730 // We must cast ints to longs and use full 64 bit stack slots
aoqi@0 731 // here. We do the cast in GraphKit::gen_stub() and just guard
aoqi@0 732 // here against loosing that change.
aoqi@0 733 assert(CCallingConventionRequiresIntsAsLongs,
aoqi@0 734 "argument of type int should be promoted to type long");
aoqi@0 735 guarantee(i > 0 && sig_bt[i-1] == T_LONG,
aoqi@0 736 "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
aoqi@0 737 "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
aoqi@0 738 // Do not count halves.
aoqi@0 739 regs[i].set_bad();
aoqi@0 740 --arg;
aoqi@0 741 break;
aoqi@0 742 case T_LONG:
aoqi@0 743 guarantee(sig_bt[i+1] == T_VOID ||
aoqi@0 744 sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR ||
aoqi@0 745 sig_bt[i+1] == T_BYTE || sig_bt[i+1] == T_SHORT ||
aoqi@0 746 sig_bt[i+1] == T_INT,
aoqi@0 747 "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
aoqi@0 748 case T_OBJECT:
aoqi@0 749 case T_ARRAY:
aoqi@0 750 case T_ADDRESS:
aoqi@0 751 case T_METADATA:
aoqi@0 752 // Oops are already boxed if required (JNI).
aoqi@0 753 if (arg < Argument::n_int_register_parameters_c) {
aoqi@0 754 reg = iarg_reg[arg];
aoqi@0 755 } else {
aoqi@0 756 reg = VMRegImpl::stack2reg(stk);
aoqi@0 757 stk += inc_stk_for_longdouble;
aoqi@0 758 }
aoqi@0 759 regs[i].set2(reg);
aoqi@0 760 break;
aoqi@0 761
aoqi@0 762 //
aoqi@0 763 // Floats are treated differently from int regs: The first 13 float arguments
aoqi@0 764 // are passed in registers (not the float args among the first 13 args).
aoqi@0 765 // Thus argument i is NOT passed in farg_reg[i] if it is float. It is passed
aoqi@0 766 // in farg_reg[j] if argument i is the j-th float argument of this call.
aoqi@0 767 //
aoqi@0 768 case T_FLOAT:
goetz@8182 769 #if defined(LINUX)
goetz@8182 770 // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
goetz@8182 771 // in the least significant word of an argument slot.
goetz@8182 772 #if defined(VM_LITTLE_ENDIAN)
goetz@8182 773 #define FLOAT_WORD_OFFSET_IN_SLOT 0
goetz@8182 774 #else
goetz@8182 775 #define FLOAT_WORD_OFFSET_IN_SLOT 1
goetz@8182 776 #endif
goetz@8182 777 #elif defined(AIX)
goetz@8182 778 // Although AIX runs on big endian CPU, float is in the most
goetz@8182 779 // significant word of an argument slot.
goetz@8182 780 #define FLOAT_WORD_OFFSET_IN_SLOT 0
goetz@8182 781 #else
goetz@8182 782 #error "unknown OS"
goetz@8182 783 #endif
aoqi@0 784 if (freg < Argument::n_float_register_parameters_c) {
aoqi@0 785 // Put float in register ...
aoqi@0 786 reg = farg_reg[freg];
aoqi@0 787 ++freg;
aoqi@0 788
aoqi@0 789 // Argument i for i > 8 is placed on the stack even if it's
aoqi@0 790 // placed in a register (if it's a float arg). Aix disassembly
aoqi@0 791 // shows that xlC places these float args on the stack AND in
aoqi@0 792 // a register. This is not documented, but we follow this
aoqi@0 793 // convention, too.
aoqi@0 794 if (arg >= Argument::n_regs_not_on_stack_c) {
aoqi@0 795 // ... and on the stack.
aoqi@0 796 guarantee(regs2 != NULL, "must pass float in register and stack slot");
goetz@8182 797 VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
aoqi@0 798 regs2[i].set1(reg2);
aoqi@0 799 stk += inc_stk_for_intfloat;
aoqi@0 800 }
aoqi@0 801
aoqi@0 802 } else {
aoqi@0 803 // Put float on stack.
goetz@8182 804 reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
aoqi@0 805 stk += inc_stk_for_intfloat;
aoqi@0 806 }
aoqi@0 807 regs[i].set1(reg);
aoqi@0 808 break;
aoqi@0 809 case T_DOUBLE:
aoqi@0 810 assert(sig_bt[i+1] == T_VOID, "expecting half");
aoqi@0 811 if (freg < Argument::n_float_register_parameters_c) {
aoqi@0 812 // Put double in register ...
aoqi@0 813 reg = farg_reg[freg];
aoqi@0 814 ++freg;
aoqi@0 815
aoqi@0 816 // Argument i for i > 8 is placed on the stack even if it's
aoqi@0 817 // placed in a register (if it's a double arg). Aix disassembly
aoqi@0 818 // shows that xlC places these float args on the stack AND in
aoqi@0 819 // a register. This is not documented, but we follow this
aoqi@0 820 // convention, too.
aoqi@0 821 if (arg >= Argument::n_regs_not_on_stack_c) {
aoqi@0 822 // ... and on the stack.
aoqi@0 823 guarantee(regs2 != NULL, "must pass float in register and stack slot");
aoqi@0 824 VMReg reg2 = VMRegImpl::stack2reg(stk);
aoqi@0 825 regs2[i].set2(reg2);
aoqi@0 826 stk += inc_stk_for_longdouble;
aoqi@0 827 }
aoqi@0 828 } else {
aoqi@0 829 // Put double on stack.
aoqi@0 830 reg = VMRegImpl::stack2reg(stk);
aoqi@0 831 stk += inc_stk_for_longdouble;
aoqi@0 832 }
aoqi@0 833 regs[i].set2(reg);
aoqi@0 834 break;
aoqi@0 835
aoqi@0 836 case T_VOID:
aoqi@0 837 // Do not count halves.
aoqi@0 838 regs[i].set_bad();
aoqi@0 839 --arg;
aoqi@0 840 break;
aoqi@0 841 default:
aoqi@0 842 ShouldNotReachHere();
aoqi@0 843 }
aoqi@0 844 }
aoqi@0 845
aoqi@0 846 return round_to(stk, 2);
aoqi@0 847 }
aoqi@0 848 #endif // COMPILER2
aoqi@0 849
aoqi@0 850 static address gen_c2i_adapter(MacroAssembler *masm,
aoqi@0 851 int total_args_passed,
aoqi@0 852 int comp_args_on_stack,
aoqi@0 853 const BasicType *sig_bt,
aoqi@0 854 const VMRegPair *regs,
aoqi@0 855 Label& call_interpreter,
aoqi@0 856 const Register& ientry) {
aoqi@0 857
aoqi@0 858 address c2i_entrypoint;
aoqi@0 859
aoqi@0 860 const Register sender_SP = R21_sender_SP; // == R21_tmp1
aoqi@0 861 const Register code = R22_tmp2;
aoqi@0 862 //const Register ientry = R23_tmp3;
aoqi@0 863 const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
aoqi@0 864 const int num_value_regs = sizeof(value_regs) / sizeof(Register);
aoqi@0 865 int value_regs_index = 0;
aoqi@0 866
aoqi@0 867 const Register return_pc = R27_tmp7;
aoqi@0 868 const Register tmp = R28_tmp8;
aoqi@0 869
aoqi@0 870 assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
aoqi@0 871
aoqi@0 872 // Adapter needs TOP_IJAVA_FRAME_ABI.
aoqi@0 873 const int adapter_size = frame::top_ijava_frame_abi_size +
aoqi@0 874 round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
aoqi@0 875
aoqi@0 876 // regular (verified) c2i entry point
aoqi@0 877 c2i_entrypoint = __ pc();
aoqi@0 878
aoqi@0 879 // Does compiled code exists? If yes, patch the caller's callsite.
aoqi@0 880 __ ld(code, method_(code));
aoqi@0 881 __ cmpdi(CCR0, code, 0);
aoqi@0 882 __ ld(ientry, method_(interpreter_entry)); // preloaded
aoqi@0 883 __ beq(CCR0, call_interpreter);
aoqi@0 884
aoqi@0 885
aoqi@0 886 // Patch caller's callsite, method_(code) was not NULL which means that
aoqi@0 887 // compiled code exists.
aoqi@0 888 __ mflr(return_pc);
aoqi@0 889 __ std(return_pc, _abi(lr), R1_SP);
aoqi@0 890 RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
aoqi@0 891
aoqi@0 892 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
aoqi@0 893
aoqi@0 894 RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
aoqi@0 895 __ ld(return_pc, _abi(lr), R1_SP);
aoqi@0 896 __ ld(ientry, method_(interpreter_entry)); // preloaded
aoqi@0 897 __ mtlr(return_pc);
aoqi@0 898
aoqi@0 899
aoqi@0 900 // Call the interpreter.
aoqi@0 901 __ BIND(call_interpreter);
aoqi@0 902 __ mtctr(ientry);
aoqi@0 903
aoqi@0 904 // Get a copy of the current SP for loading caller's arguments.
aoqi@0 905 __ mr(sender_SP, R1_SP);
aoqi@0 906
aoqi@0 907 // Add space for the adapter.
aoqi@0 908 __ resize_frame(-adapter_size, R12_scratch2);
aoqi@0 909
aoqi@0 910 int st_off = adapter_size - wordSize;
aoqi@0 911
aoqi@0 912 // Write the args into the outgoing interpreter space.
aoqi@0 913 for (int i = 0; i < total_args_passed; i++) {
aoqi@0 914 VMReg r_1 = regs[i].first();
aoqi@0 915 VMReg r_2 = regs[i].second();
aoqi@0 916 if (!r_1->is_valid()) {
aoqi@0 917 assert(!r_2->is_valid(), "");
aoqi@0 918 continue;
aoqi@0 919 }
aoqi@0 920 if (r_1->is_stack()) {
aoqi@0 921 Register tmp_reg = value_regs[value_regs_index];
aoqi@0 922 value_regs_index = (value_regs_index + 1) % num_value_regs;
aoqi@0 923 // The calling convention produces OptoRegs that ignore the out
aoqi@0 924 // preserve area (JIT's ABI). We must account for it here.
aoqi@0 925 int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
aoqi@0 926 if (!r_2->is_valid()) {
aoqi@0 927 __ lwz(tmp_reg, ld_off, sender_SP);
aoqi@0 928 } else {
aoqi@0 929 __ ld(tmp_reg, ld_off, sender_SP);
aoqi@0 930 }
aoqi@0 931 // Pretend stack targets were loaded into tmp_reg.
aoqi@0 932 r_1 = tmp_reg->as_VMReg();
aoqi@0 933 }
aoqi@0 934
aoqi@0 935 if (r_1->is_Register()) {
aoqi@0 936 Register r = r_1->as_Register();
aoqi@0 937 if (!r_2->is_valid()) {
aoqi@0 938 __ stw(r, st_off, R1_SP);
aoqi@0 939 st_off-=wordSize;
aoqi@0 940 } else {
aoqi@0 941 // Longs are given 2 64-bit slots in the interpreter, but the
aoqi@0 942 // data is passed in only 1 slot.
aoqi@0 943 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
aoqi@0 944 DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
aoqi@0 945 st_off-=wordSize;
aoqi@0 946 }
aoqi@0 947 __ std(r, st_off, R1_SP);
aoqi@0 948 st_off-=wordSize;
aoqi@0 949 }
aoqi@0 950 } else {
aoqi@0 951 assert(r_1->is_FloatRegister(), "");
aoqi@0 952 FloatRegister f = r_1->as_FloatRegister();
aoqi@0 953 if (!r_2->is_valid()) {
aoqi@0 954 __ stfs(f, st_off, R1_SP);
aoqi@0 955 st_off-=wordSize;
aoqi@0 956 } else {
aoqi@0 957 // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
aoqi@0 958 // data is passed in only 1 slot.
aoqi@0 959 // One of these should get known junk...
aoqi@0 960 DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
aoqi@0 961 st_off-=wordSize;
aoqi@0 962 __ stfd(f, st_off, R1_SP);
aoqi@0 963 st_off-=wordSize;
aoqi@0 964 }
aoqi@0 965 }
aoqi@0 966 }
aoqi@0 967
aoqi@0 968 // Jump to the interpreter just as if interpreter was doing it.
aoqi@0 969
aoqi@0 970 #ifdef CC_INTERP
aoqi@0 971 const Register tos = R17_tos;
aoqi@0 972 #else
aoqi@0 973 const Register tos = R15_esp;
aoqi@0 974 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
aoqi@0 975 #endif
aoqi@0 976
aoqi@0 977 // load TOS
aoqi@0 978 __ addi(tos, R1_SP, st_off);
aoqi@0 979
aoqi@0 980 // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
aoqi@0 981 assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
aoqi@0 982 __ bctr();
aoqi@0 983
aoqi@0 984 return c2i_entrypoint;
aoqi@0 985 }
aoqi@0 986
aoqi@0 987 static void gen_i2c_adapter(MacroAssembler *masm,
aoqi@0 988 int total_args_passed,
aoqi@0 989 int comp_args_on_stack,
aoqi@0 990 const BasicType *sig_bt,
aoqi@0 991 const VMRegPair *regs) {
aoqi@0 992
aoqi@0 993 // Load method's entry-point from method.
aoqi@0 994 __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
aoqi@0 995 __ mtctr(R12_scratch2);
aoqi@0 996
aoqi@0 997 // We will only enter here from an interpreted frame and never from after
aoqi@0 998 // passing thru a c2i. Azul allowed this but we do not. If we lose the
aoqi@0 999 // race and use a c2i we will remain interpreted for the race loser(s).
aoqi@0 1000 // This removes all sorts of headaches on the x86 side and also eliminates
aoqi@0 1001 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
aoqi@0 1002
aoqi@0 1003 // Note: r13 contains the senderSP on entry. We must preserve it since
aoqi@0 1004 // we may do a i2c -> c2i transition if we lose a race where compiled
aoqi@0 1005 // code goes non-entrant while we get args ready.
aoqi@0 1006 // In addition we use r13 to locate all the interpreter args as
aoqi@0 1007 // we must align the stack to 16 bytes on an i2c entry else we
aoqi@0 1008 // lose alignment we expect in all compiled code and register
aoqi@0 1009 // save code can segv when fxsave instructions find improperly
aoqi@0 1010 // aligned stack pointer.
aoqi@0 1011
aoqi@0 1012 #ifdef CC_INTERP
aoqi@0 1013 const Register ld_ptr = R17_tos;
aoqi@0 1014 #else
aoqi@0 1015 const Register ld_ptr = R15_esp;
aoqi@0 1016 #endif
aoqi@0 1017
aoqi@0 1018 const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
aoqi@0 1019 const int num_value_regs = sizeof(value_regs) / sizeof(Register);
aoqi@0 1020 int value_regs_index = 0;
aoqi@0 1021
aoqi@0 1022 int ld_offset = total_args_passed*wordSize;
aoqi@0 1023
aoqi@0 1024 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
aoqi@0 1025 // in registers, we will occasionally have no stack args.
aoqi@0 1026 int comp_words_on_stack = 0;
aoqi@0 1027 if (comp_args_on_stack) {
aoqi@0 1028 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
aoqi@0 1029 // registers are below. By subtracting stack0, we either get a negative
aoqi@0 1030 // number (all values in registers) or the maximum stack slot accessed.
aoqi@0 1031
aoqi@0 1032 // Convert 4-byte c2 stack slots to words.
aoqi@0 1033 comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
aoqi@0 1034 // Round up to miminum stack alignment, in wordSize.
aoqi@0 1035 comp_words_on_stack = round_to(comp_words_on_stack, 2);
aoqi@0 1036 __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
aoqi@0 1037 }
aoqi@0 1038
aoqi@0 1039 // Now generate the shuffle code. Pick up all register args and move the
aoqi@0 1040 // rest through register value=Z_R12.
aoqi@0 1041 BLOCK_COMMENT("Shuffle arguments");
aoqi@0 1042 for (int i = 0; i < total_args_passed; i++) {
aoqi@0 1043 if (sig_bt[i] == T_VOID) {
aoqi@0 1044 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
aoqi@0 1045 continue;
aoqi@0 1046 }
aoqi@0 1047
aoqi@0 1048 // Pick up 0, 1 or 2 words from ld_ptr.
aoqi@0 1049 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
aoqi@0 1050 "scrambled load targets?");
aoqi@0 1051 VMReg r_1 = regs[i].first();
aoqi@0 1052 VMReg r_2 = regs[i].second();
aoqi@0 1053 if (!r_1->is_valid()) {
aoqi@0 1054 assert(!r_2->is_valid(), "");
aoqi@0 1055 continue;
aoqi@0 1056 }
aoqi@0 1057 if (r_1->is_FloatRegister()) {
aoqi@0 1058 if (!r_2->is_valid()) {
aoqi@0 1059 __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
aoqi@0 1060 ld_offset-=wordSize;
aoqi@0 1061 } else {
aoqi@0 1062 // Skip the unused interpreter slot.
aoqi@0 1063 __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
aoqi@0 1064 ld_offset-=2*wordSize;
aoqi@0 1065 }
aoqi@0 1066 } else {
aoqi@0 1067 Register r;
aoqi@0 1068 if (r_1->is_stack()) {
aoqi@0 1069 // Must do a memory to memory move thru "value".
aoqi@0 1070 r = value_regs[value_regs_index];
aoqi@0 1071 value_regs_index = (value_regs_index + 1) % num_value_regs;
aoqi@0 1072 } else {
aoqi@0 1073 r = r_1->as_Register();
aoqi@0 1074 }
aoqi@0 1075 if (!r_2->is_valid()) {
aoqi@0 1076 // Not sure we need to do this but it shouldn't hurt.
aoqi@0 1077 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
aoqi@0 1078 __ ld(r, ld_offset, ld_ptr);
aoqi@0 1079 ld_offset-=wordSize;
aoqi@0 1080 } else {
aoqi@0 1081 __ lwz(r, ld_offset, ld_ptr);
aoqi@0 1082 ld_offset-=wordSize;
aoqi@0 1083 }
aoqi@0 1084 } else {
aoqi@0 1085 // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
aoqi@0 1086 // data is passed in only 1 slot.
aoqi@0 1087 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
aoqi@0 1088 ld_offset-=wordSize;
aoqi@0 1089 }
aoqi@0 1090 __ ld(r, ld_offset, ld_ptr);
aoqi@0 1091 ld_offset-=wordSize;
aoqi@0 1092 }
aoqi@0 1093
aoqi@0 1094 if (r_1->is_stack()) {
aoqi@0 1095 // Now store value where the compiler expects it
aoqi@0 1096 int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
aoqi@0 1097
aoqi@0 1098 if (sig_bt[i] == T_INT || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
aoqi@0 1099 sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR || sig_bt[i] == T_BYTE) {
aoqi@0 1100 __ stw(r, st_off, R1_SP);
aoqi@0 1101 } else {
aoqi@0 1102 __ std(r, st_off, R1_SP);
aoqi@0 1103 }
aoqi@0 1104 }
aoqi@0 1105 }
aoqi@0 1106 }
aoqi@0 1107
aoqi@0 1108 BLOCK_COMMENT("Store method");
aoqi@0 1109 // Store method into thread->callee_target.
aoqi@0 1110 // We might end up in handle_wrong_method if the callee is
aoqi@0 1111 // deoptimized as we race thru here. If that happens we don't want
aoqi@0 1112 // to take a safepoint because the caller frame will look
aoqi@0 1113 // interpreted and arguments are now "compiled" so it is much better
aoqi@0 1114 // to make this transition invisible to the stack walking
aoqi@0 1115 // code. Unfortunately if we try and find the callee by normal means
aoqi@0 1116 // a safepoint is possible. So we stash the desired callee in the
aoqi@0 1117 // thread and the vm will find there should this case occur.
aoqi@0 1118 __ std(R19_method, thread_(callee_target));
aoqi@0 1119
aoqi@0 1120 // Jump to the compiled code just as if compiled code was doing it.
aoqi@0 1121 __ bctr();
aoqi@0 1122 }
aoqi@0 1123
aoqi@0 1124 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
aoqi@0 1125 int total_args_passed,
aoqi@0 1126 int comp_args_on_stack,
aoqi@0 1127 const BasicType *sig_bt,
aoqi@0 1128 const VMRegPair *regs,
aoqi@0 1129 AdapterFingerPrint* fingerprint) {
aoqi@0 1130 address i2c_entry;
aoqi@0 1131 address c2i_unverified_entry;
aoqi@0 1132 address c2i_entry;
aoqi@0 1133
aoqi@0 1134
aoqi@0 1135 // entry: i2c
aoqi@0 1136
aoqi@0 1137 __ align(CodeEntryAlignment);
aoqi@0 1138 i2c_entry = __ pc();
aoqi@0 1139 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
aoqi@0 1140
aoqi@0 1141
aoqi@0 1142 // entry: c2i unverified
aoqi@0 1143
aoqi@0 1144 __ align(CodeEntryAlignment);
aoqi@0 1145 BLOCK_COMMENT("c2i unverified entry");
aoqi@0 1146 c2i_unverified_entry = __ pc();
aoqi@0 1147
aoqi@0 1148 // inline_cache contains a compiledICHolder
aoqi@0 1149 const Register ic = R19_method;
aoqi@0 1150 const Register ic_klass = R11_scratch1;
aoqi@0 1151 const Register receiver_klass = R12_scratch2;
aoqi@0 1152 const Register code = R21_tmp1;
aoqi@0 1153 const Register ientry = R23_tmp3;
aoqi@0 1154
aoqi@0 1155 assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
aoqi@0 1156 assert(R11_scratch1 == R11, "need prologue scratch register");
aoqi@0 1157
aoqi@0 1158 Label call_interpreter;
aoqi@0 1159
aoqi@0 1160 assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
aoqi@0 1161 "klass offset should reach into any page");
aoqi@0 1162 // Check for NULL argument if we don't have implicit null checks.
aoqi@0 1163 if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
aoqi@0 1164 if (TrapBasedNullChecks) {
aoqi@0 1165 __ trap_null_check(R3_ARG1);
aoqi@0 1166 } else {
aoqi@0 1167 Label valid;
aoqi@0 1168 __ cmpdi(CCR0, R3_ARG1, 0);
aoqi@0 1169 __ bne_predict_taken(CCR0, valid);
aoqi@0 1170 // We have a null argument, branch to ic_miss_stub.
aoqi@0 1171 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
aoqi@0 1172 relocInfo::runtime_call_type);
aoqi@0 1173 __ BIND(valid);
aoqi@0 1174 }
aoqi@0 1175 }
aoqi@0 1176 // Assume argument is not NULL, load klass from receiver.
aoqi@0 1177 __ load_klass(receiver_klass, R3_ARG1);
aoqi@0 1178
aoqi@0 1179 __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
aoqi@0 1180
aoqi@0 1181 if (TrapBasedICMissChecks) {
aoqi@0 1182 __ trap_ic_miss_check(receiver_klass, ic_klass);
aoqi@0 1183 } else {
aoqi@0 1184 Label valid;
aoqi@0 1185 __ cmpd(CCR0, receiver_klass, ic_klass);
aoqi@0 1186 __ beq_predict_taken(CCR0, valid);
aoqi@0 1187 // We have an unexpected klass, branch to ic_miss_stub.
aoqi@0 1188 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
aoqi@0 1189 relocInfo::runtime_call_type);
aoqi@0 1190 __ BIND(valid);
aoqi@0 1191 }
aoqi@0 1192
aoqi@0 1193 // Argument is valid and klass is as expected, continue.
aoqi@0 1194
aoqi@0 1195 // Extract method from inline cache, verified entry point needs it.
aoqi@0 1196 __ ld(R19_method, CompiledICHolder::holder_method_offset(), ic);
aoqi@0 1197 assert(R19_method == ic, "the inline cache register is dead here");
aoqi@0 1198
aoqi@0 1199 __ ld(code, method_(code));
aoqi@0 1200 __ cmpdi(CCR0, code, 0);
aoqi@0 1201 __ ld(ientry, method_(interpreter_entry)); // preloaded
aoqi@0 1202 __ beq_predict_taken(CCR0, call_interpreter);
aoqi@0 1203
aoqi@0 1204 // Branch to ic_miss_stub.
aoqi@0 1205 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
aoqi@0 1206
aoqi@0 1207 // entry: c2i
aoqi@0 1208
aoqi@0 1209 c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
aoqi@0 1210
aoqi@0 1211 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
aoqi@0 1212 }
aoqi@0 1213
aoqi@0 1214 #ifdef COMPILER2
aoqi@0 1215 // An oop arg. Must pass a handle not the oop itself.
aoqi@0 1216 static void object_move(MacroAssembler* masm,
aoqi@0 1217 int frame_size_in_slots,
aoqi@0 1218 OopMap* oop_map, int oop_handle_offset,
aoqi@0 1219 bool is_receiver, int* receiver_offset,
aoqi@0 1220 VMRegPair src, VMRegPair dst,
aoqi@0 1221 Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
aoqi@0 1222 assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
aoqi@0 1223 "receiver has already been moved");
aoqi@0 1224
aoqi@0 1225 // We must pass a handle. First figure out the location we use as a handle.
aoqi@0 1226
aoqi@0 1227 if (src.first()->is_stack()) {
aoqi@0 1228 // stack to stack or reg
aoqi@0 1229
aoqi@0 1230 const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
aoqi@0 1231 Label skip;
aoqi@0 1232 const int oop_slot_in_callers_frame = reg2slot(src.first());
aoqi@0 1233
aoqi@0 1234 guarantee(!is_receiver, "expecting receiver in register");
aoqi@0 1235 oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
aoqi@0 1236
aoqi@0 1237 __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
aoqi@0 1238 __ ld( r_temp_2, reg2offset(src.first()), r_caller_sp);
aoqi@0 1239 __ cmpdi(CCR0, r_temp_2, 0);
aoqi@0 1240 __ bne(CCR0, skip);
aoqi@0 1241 // Use a NULL handle if oop is NULL.
aoqi@0 1242 __ li(r_handle, 0);
aoqi@0 1243 __ bind(skip);
aoqi@0 1244
aoqi@0 1245 if (dst.first()->is_stack()) {
aoqi@0 1246 // stack to stack
aoqi@0 1247 __ std(r_handle, reg2offset(dst.first()), R1_SP);
aoqi@0 1248 } else {
aoqi@0 1249 // stack to reg
aoqi@0 1250 // Nothing to do, r_handle is already the dst register.
aoqi@0 1251 }
aoqi@0 1252 } else {
aoqi@0 1253 // reg to stack or reg
aoqi@0 1254 const Register r_oop = src.first()->as_Register();
aoqi@0 1255 const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
aoqi@0 1256 const int oop_slot = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
aoqi@0 1257 + oop_handle_offset; // in slots
aoqi@0 1258 const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
aoqi@0 1259 Label skip;
aoqi@0 1260
aoqi@0 1261 if (is_receiver) {
aoqi@0 1262 *receiver_offset = oop_offset;
aoqi@0 1263 }
aoqi@0 1264 oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
aoqi@0 1265
aoqi@0 1266 __ std( r_oop, oop_offset, R1_SP);
aoqi@0 1267 __ addi(r_handle, R1_SP, oop_offset);
aoqi@0 1268
aoqi@0 1269 __ cmpdi(CCR0, r_oop, 0);
aoqi@0 1270 __ bne(CCR0, skip);
aoqi@0 1271 // Use a NULL handle if oop is NULL.
aoqi@0 1272 __ li(r_handle, 0);
aoqi@0 1273 __ bind(skip);
aoqi@0 1274
aoqi@0 1275 if (dst.first()->is_stack()) {
aoqi@0 1276 // reg to stack
aoqi@0 1277 __ std(r_handle, reg2offset(dst.first()), R1_SP);
aoqi@0 1278 } else {
aoqi@0 1279 // reg to reg
aoqi@0 1280 // Nothing to do, r_handle is already the dst register.
aoqi@0 1281 }
aoqi@0 1282 }
aoqi@0 1283 }
aoqi@0 1284
aoqi@0 1285 static void int_move(MacroAssembler*masm,
aoqi@0 1286 VMRegPair src, VMRegPair dst,
aoqi@0 1287 Register r_caller_sp, Register r_temp) {
aoqi@0 1288 assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
aoqi@0 1289 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
aoqi@0 1290
aoqi@0 1291 if (src.first()->is_stack()) {
aoqi@0 1292 if (dst.first()->is_stack()) {
aoqi@0 1293 // stack to stack
aoqi@0 1294 __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
aoqi@0 1295 __ std(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1296 } else {
aoqi@0 1297 // stack to reg
aoqi@0 1298 __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
aoqi@0 1299 }
aoqi@0 1300 } else if (dst.first()->is_stack()) {
aoqi@0 1301 // reg to stack
aoqi@0 1302 __ extsw(r_temp, src.first()->as_Register());
aoqi@0 1303 __ std(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1304 } else {
aoqi@0 1305 // reg to reg
aoqi@0 1306 __ extsw(dst.first()->as_Register(), src.first()->as_Register());
aoqi@0 1307 }
aoqi@0 1308 }
aoqi@0 1309
aoqi@0 1310 static void long_move(MacroAssembler*masm,
aoqi@0 1311 VMRegPair src, VMRegPair dst,
aoqi@0 1312 Register r_caller_sp, Register r_temp) {
aoqi@0 1313 assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
aoqi@0 1314 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
aoqi@0 1315
aoqi@0 1316 if (src.first()->is_stack()) {
aoqi@0 1317 if (dst.first()->is_stack()) {
aoqi@0 1318 // stack to stack
aoqi@0 1319 __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
aoqi@0 1320 __ std(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1321 } else {
aoqi@0 1322 // stack to reg
aoqi@0 1323 __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
aoqi@0 1324 }
aoqi@0 1325 } else if (dst.first()->is_stack()) {
aoqi@0 1326 // reg to stack
aoqi@0 1327 __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
aoqi@0 1328 } else {
aoqi@0 1329 // reg to reg
aoqi@0 1330 if (dst.first()->as_Register() != src.first()->as_Register())
aoqi@0 1331 __ mr(dst.first()->as_Register(), src.first()->as_Register());
aoqi@0 1332 }
aoqi@0 1333 }
aoqi@0 1334
aoqi@0 1335 static void float_move(MacroAssembler*masm,
aoqi@0 1336 VMRegPair src, VMRegPair dst,
aoqi@0 1337 Register r_caller_sp, Register r_temp) {
aoqi@0 1338 assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
aoqi@0 1339 assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
aoqi@0 1340
aoqi@0 1341 if (src.first()->is_stack()) {
aoqi@0 1342 if (dst.first()->is_stack()) {
aoqi@0 1343 // stack to stack
aoqi@0 1344 __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
aoqi@0 1345 __ stw(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1346 } else {
aoqi@0 1347 // stack to reg
aoqi@0 1348 __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
aoqi@0 1349 }
aoqi@0 1350 } else if (dst.first()->is_stack()) {
aoqi@0 1351 // reg to stack
aoqi@0 1352 __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
aoqi@0 1353 } else {
aoqi@0 1354 // reg to reg
aoqi@0 1355 if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
aoqi@0 1356 __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
aoqi@0 1357 }
aoqi@0 1358 }
aoqi@0 1359
aoqi@0 1360 static void double_move(MacroAssembler*masm,
aoqi@0 1361 VMRegPair src, VMRegPair dst,
aoqi@0 1362 Register r_caller_sp, Register r_temp) {
aoqi@0 1363 assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
aoqi@0 1364 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
aoqi@0 1365
aoqi@0 1366 if (src.first()->is_stack()) {
aoqi@0 1367 if (dst.first()->is_stack()) {
aoqi@0 1368 // stack to stack
aoqi@0 1369 __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
aoqi@0 1370 __ std(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1371 } else {
aoqi@0 1372 // stack to reg
aoqi@0 1373 __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
aoqi@0 1374 }
aoqi@0 1375 } else if (dst.first()->is_stack()) {
aoqi@0 1376 // reg to stack
aoqi@0 1377 __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
aoqi@0 1378 } else {
aoqi@0 1379 // reg to reg
aoqi@0 1380 if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
aoqi@0 1381 __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
aoqi@0 1382 }
aoqi@0 1383 }
aoqi@0 1384
aoqi@0 1385 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
aoqi@0 1386 switch (ret_type) {
aoqi@0 1387 case T_BOOLEAN:
aoqi@0 1388 case T_CHAR:
aoqi@0 1389 case T_BYTE:
aoqi@0 1390 case T_SHORT:
aoqi@0 1391 case T_INT:
aoqi@0 1392 __ stw (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1393 break;
aoqi@0 1394 case T_ARRAY:
aoqi@0 1395 case T_OBJECT:
aoqi@0 1396 case T_LONG:
aoqi@0 1397 __ std (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1398 break;
aoqi@0 1399 case T_FLOAT:
aoqi@0 1400 __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1401 break;
aoqi@0 1402 case T_DOUBLE:
aoqi@0 1403 __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1404 break;
aoqi@0 1405 case T_VOID:
aoqi@0 1406 break;
aoqi@0 1407 default:
aoqi@0 1408 ShouldNotReachHere();
aoqi@0 1409 break;
aoqi@0 1410 }
aoqi@0 1411 }
aoqi@0 1412
aoqi@0 1413 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
aoqi@0 1414 switch (ret_type) {
aoqi@0 1415 case T_BOOLEAN:
aoqi@0 1416 case T_CHAR:
aoqi@0 1417 case T_BYTE:
aoqi@0 1418 case T_SHORT:
aoqi@0 1419 case T_INT:
aoqi@0 1420 __ lwz(R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1421 break;
aoqi@0 1422 case T_ARRAY:
aoqi@0 1423 case T_OBJECT:
aoqi@0 1424 case T_LONG:
aoqi@0 1425 __ ld (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1426 break;
aoqi@0 1427 case T_FLOAT:
aoqi@0 1428 __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1429 break;
aoqi@0 1430 case T_DOUBLE:
aoqi@0 1431 __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
aoqi@0 1432 break;
aoqi@0 1433 case T_VOID:
aoqi@0 1434 break;
aoqi@0 1435 default:
aoqi@0 1436 ShouldNotReachHere();
aoqi@0 1437 break;
aoqi@0 1438 }
aoqi@0 1439 }
aoqi@0 1440
aoqi@0 1441 static void save_or_restore_arguments(MacroAssembler* masm,
aoqi@0 1442 const int stack_slots,
aoqi@0 1443 const int total_in_args,
aoqi@0 1444 const int arg_save_area,
aoqi@0 1445 OopMap* map,
aoqi@0 1446 VMRegPair* in_regs,
aoqi@0 1447 BasicType* in_sig_bt) {
aoqi@0 1448 // If map is non-NULL then the code should store the values,
aoqi@0 1449 // otherwise it should load them.
aoqi@0 1450 int slot = arg_save_area;
aoqi@0 1451 // Save down double word first.
aoqi@0 1452 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1453 if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
aoqi@0 1454 int offset = slot * VMRegImpl::stack_slot_size;
aoqi@0 1455 slot += VMRegImpl::slots_per_word;
aoqi@0 1456 assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
aoqi@0 1457 if (map != NULL) {
aoqi@0 1458 __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
aoqi@0 1459 } else {
aoqi@0 1460 __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
aoqi@0 1461 }
aoqi@0 1462 } else if (in_regs[i].first()->is_Register() &&
aoqi@0 1463 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
aoqi@0 1464 int offset = slot * VMRegImpl::stack_slot_size;
aoqi@0 1465 if (map != NULL) {
aoqi@0 1466 __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
aoqi@0 1467 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 1468 map->set_oop(VMRegImpl::stack2reg(slot));
aoqi@0 1469 }
aoqi@0 1470 } else {
aoqi@0 1471 __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
aoqi@0 1472 }
aoqi@0 1473 slot += VMRegImpl::slots_per_word;
aoqi@0 1474 assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
aoqi@0 1475 }
aoqi@0 1476 }
aoqi@0 1477 // Save or restore single word registers.
aoqi@0 1478 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1479 // PPC64: pass ints as longs: must only deal with floats here.
aoqi@0 1480 if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1481 if (in_sig_bt[i] == T_FLOAT) {
aoqi@0 1482 int offset = slot * VMRegImpl::stack_slot_size;
aoqi@0 1483 slot++;
aoqi@0 1484 assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
aoqi@0 1485 if (map != NULL) {
aoqi@0 1486 __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
aoqi@0 1487 } else {
aoqi@0 1488 __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
aoqi@0 1489 }
aoqi@0 1490 }
aoqi@0 1491 } else if (in_regs[i].first()->is_stack()) {
aoqi@0 1492 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
aoqi@0 1493 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
aoqi@0 1494 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
aoqi@0 1495 }
aoqi@0 1496 }
aoqi@0 1497 }
aoqi@0 1498 }
aoqi@0 1499
aoqi@0 1500 // Check GC_locker::needs_gc and enter the runtime if it's true. This
aoqi@0 1501 // keeps a new JNI critical region from starting until a GC has been
aoqi@0 1502 // forced. Save down any oops in registers and describe them in an
aoqi@0 1503 // OopMap.
aoqi@0 1504 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
aoqi@0 1505 const int stack_slots,
aoqi@0 1506 const int total_in_args,
aoqi@0 1507 const int arg_save_area,
aoqi@0 1508 OopMapSet* oop_maps,
aoqi@0 1509 VMRegPair* in_regs,
aoqi@0 1510 BasicType* in_sig_bt,
aoqi@0 1511 Register tmp_reg ) {
aoqi@0 1512 __ block_comment("check GC_locker::needs_gc");
aoqi@0 1513 Label cont;
aoqi@0 1514 __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
aoqi@0 1515 __ cmplwi(CCR0, tmp_reg, 0);
aoqi@0 1516 __ beq(CCR0, cont);
aoqi@0 1517
aoqi@0 1518 // Save down any values that are live in registers and call into the
aoqi@0 1519 // runtime to halt for a GC.
aoqi@0 1520 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 1521 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1522 arg_save_area, map, in_regs, in_sig_bt);
aoqi@0 1523
aoqi@0 1524 __ mr(R3_ARG1, R16_thread);
aoqi@0 1525 __ set_last_Java_frame(R1_SP, noreg);
aoqi@0 1526
aoqi@0 1527 __ block_comment("block_for_jni_critical");
aoqi@0 1528 address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
aoqi@0 1529 #if defined(ABI_ELFv2)
aoqi@0 1530 __ call_c(entry_point, relocInfo::runtime_call_type);
aoqi@0 1531 #else
aoqi@0 1532 __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
aoqi@0 1533 #endif
aoqi@0 1534 address start = __ pc() - __ offset(),
aoqi@0 1535 calls_return_pc = __ last_calls_return_pc();
aoqi@0 1536 oop_maps->add_gc_map(calls_return_pc - start, map);
aoqi@0 1537
aoqi@0 1538 __ reset_last_Java_frame();
aoqi@0 1539
aoqi@0 1540 // Reload all the register arguments.
aoqi@0 1541 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1542 arg_save_area, NULL, in_regs, in_sig_bt);
aoqi@0 1543
aoqi@0 1544 __ BIND(cont);
aoqi@0 1545
aoqi@0 1546 #ifdef ASSERT
aoqi@0 1547 if (StressCriticalJNINatives) {
aoqi@0 1548 // Stress register saving.
aoqi@0 1549 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 1550 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1551 arg_save_area, map, in_regs, in_sig_bt);
aoqi@0 1552 // Destroy argument registers.
aoqi@0 1553 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1554 if (in_regs[i].first()->is_Register()) {
aoqi@0 1555 const Register reg = in_regs[i].first()->as_Register();
aoqi@0 1556 __ neg(reg, reg);
aoqi@0 1557 } else if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1558 __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
aoqi@0 1559 }
aoqi@0 1560 }
aoqi@0 1561
aoqi@0 1562 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1563 arg_save_area, NULL, in_regs, in_sig_bt);
aoqi@0 1564 }
aoqi@0 1565 #endif
aoqi@0 1566 }
aoqi@0 1567
aoqi@0 1568 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
aoqi@0 1569 if (src.first()->is_stack()) {
aoqi@0 1570 if (dst.first()->is_stack()) {
aoqi@0 1571 // stack to stack
aoqi@0 1572 __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
aoqi@0 1573 __ std(r_temp, reg2offset(dst.first()), R1_SP);
aoqi@0 1574 } else {
aoqi@0 1575 // stack to reg
aoqi@0 1576 __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
aoqi@0 1577 }
aoqi@0 1578 } else if (dst.first()->is_stack()) {
aoqi@0 1579 // reg to stack
aoqi@0 1580 __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
aoqi@0 1581 } else {
aoqi@0 1582 if (dst.first() != src.first()) {
aoqi@0 1583 __ mr(dst.first()->as_Register(), src.first()->as_Register());
aoqi@0 1584 }
aoqi@0 1585 }
aoqi@0 1586 }
aoqi@0 1587
aoqi@0 1588 // Unpack an array argument into a pointer to the body and the length
aoqi@0 1589 // if the array is non-null, otherwise pass 0 for both.
aoqi@0 1590 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
aoqi@0 1591 VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
aoqi@0 1592 Register tmp_reg, Register tmp2_reg) {
aoqi@0 1593 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
aoqi@0 1594 "possible collision");
aoqi@0 1595 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
aoqi@0 1596 "possible collision");
aoqi@0 1597
aoqi@0 1598 // Pass the length, ptr pair.
aoqi@0 1599 Label set_out_args;
aoqi@0 1600 VMRegPair tmp, tmp2;
aoqi@0 1601 tmp.set_ptr(tmp_reg->as_VMReg());
aoqi@0 1602 tmp2.set_ptr(tmp2_reg->as_VMReg());
aoqi@0 1603 if (reg.first()->is_stack()) {
aoqi@0 1604 // Load the arg up from the stack.
aoqi@0 1605 move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
aoqi@0 1606 reg = tmp;
aoqi@0 1607 }
aoqi@0 1608 __ li(tmp2_reg, 0); // Pass zeros if Array=null.
aoqi@0 1609 if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
aoqi@0 1610 __ cmpdi(CCR0, reg.first()->as_Register(), 0);
aoqi@0 1611 __ beq(CCR0, set_out_args);
aoqi@0 1612 __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
aoqi@0 1613 __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
aoqi@0 1614 __ bind(set_out_args);
aoqi@0 1615 move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
aoqi@0 1616 move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
aoqi@0 1617 }
aoqi@0 1618
aoqi@0 1619 static void verify_oop_args(MacroAssembler* masm,
aoqi@0 1620 methodHandle method,
aoqi@0 1621 const BasicType* sig_bt,
aoqi@0 1622 const VMRegPair* regs) {
aoqi@0 1623 Register temp_reg = R19_method; // not part of any compiled calling seq
aoqi@0 1624 if (VerifyOops) {
aoqi@0 1625 for (int i = 0; i < method->size_of_parameters(); i++) {
aoqi@0 1626 if (sig_bt[i] == T_OBJECT ||
aoqi@0 1627 sig_bt[i] == T_ARRAY) {
aoqi@0 1628 VMReg r = regs[i].first();
aoqi@0 1629 assert(r->is_valid(), "bad oop arg");
aoqi@0 1630 if (r->is_stack()) {
aoqi@0 1631 __ ld(temp_reg, reg2offset(r), R1_SP);
aoqi@0 1632 __ verify_oop(temp_reg);
aoqi@0 1633 } else {
aoqi@0 1634 __ verify_oop(r->as_Register());
aoqi@0 1635 }
aoqi@0 1636 }
aoqi@0 1637 }
aoqi@0 1638 }
aoqi@0 1639 }
aoqi@0 1640
aoqi@0 1641 static void gen_special_dispatch(MacroAssembler* masm,
aoqi@0 1642 methodHandle method,
aoqi@0 1643 const BasicType* sig_bt,
aoqi@0 1644 const VMRegPair* regs) {
aoqi@0 1645 verify_oop_args(masm, method, sig_bt, regs);
aoqi@0 1646 vmIntrinsics::ID iid = method->intrinsic_id();
aoqi@0 1647
aoqi@0 1648 // Now write the args into the outgoing interpreter space
aoqi@0 1649 bool has_receiver = false;
aoqi@0 1650 Register receiver_reg = noreg;
aoqi@0 1651 int member_arg_pos = -1;
aoqi@0 1652 Register member_reg = noreg;
aoqi@0 1653 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
aoqi@0 1654 if (ref_kind != 0) {
aoqi@0 1655 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
aoqi@0 1656 member_reg = R19_method; // known to be free at this point
aoqi@0 1657 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
aoqi@0 1658 } else if (iid == vmIntrinsics::_invokeBasic) {
aoqi@0 1659 has_receiver = true;
aoqi@0 1660 } else {
aoqi@0 1661 fatal(err_msg_res("unexpected intrinsic id %d", iid));
aoqi@0 1662 }
aoqi@0 1663
aoqi@0 1664 if (member_reg != noreg) {
aoqi@0 1665 // Load the member_arg into register, if necessary.
aoqi@0 1666 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
aoqi@0 1667 VMReg r = regs[member_arg_pos].first();
aoqi@0 1668 if (r->is_stack()) {
aoqi@0 1669 __ ld(member_reg, reg2offset(r), R1_SP);
aoqi@0 1670 } else {
aoqi@0 1671 // no data motion is needed
aoqi@0 1672 member_reg = r->as_Register();
aoqi@0 1673 }
aoqi@0 1674 }
aoqi@0 1675
aoqi@0 1676 if (has_receiver) {
aoqi@0 1677 // Make sure the receiver is loaded into a register.
aoqi@0 1678 assert(method->size_of_parameters() > 0, "oob");
aoqi@0 1679 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
aoqi@0 1680 VMReg r = regs[0].first();
aoqi@0 1681 assert(r->is_valid(), "bad receiver arg");
aoqi@0 1682 if (r->is_stack()) {
aoqi@0 1683 // Porting note: This assumes that compiled calling conventions always
aoqi@0 1684 // pass the receiver oop in a register. If this is not true on some
aoqi@0 1685 // platform, pick a temp and load the receiver from stack.
aoqi@0 1686 fatal("receiver always in a register");
aoqi@0 1687 receiver_reg = R11_scratch1; // TODO (hs24): is R11_scratch1 really free at this point?
aoqi@0 1688 __ ld(receiver_reg, reg2offset(r), R1_SP);
aoqi@0 1689 } else {
aoqi@0 1690 // no data motion is needed
aoqi@0 1691 receiver_reg = r->as_Register();
aoqi@0 1692 }
aoqi@0 1693 }
aoqi@0 1694
aoqi@0 1695 // Figure out which address we are really jumping to:
aoqi@0 1696 MethodHandles::generate_method_handle_dispatch(masm, iid,
aoqi@0 1697 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
aoqi@0 1698 }
aoqi@0 1699
aoqi@0 1700 #endif // COMPILER2
aoqi@0 1701
aoqi@0 1702 // ---------------------------------------------------------------------------
aoqi@0 1703 // Generate a native wrapper for a given method. The method takes arguments
aoqi@0 1704 // in the Java compiled code convention, marshals them to the native
aoqi@0 1705 // convention (handlizes oops, etc), transitions to native, makes the call,
aoqi@0 1706 // returns to java state (possibly blocking), unhandlizes any result and
aoqi@0 1707 // returns.
aoqi@0 1708 //
aoqi@0 1709 // Critical native functions are a shorthand for the use of
aoqi@0 1710 // GetPrimtiveArrayCritical and disallow the use of any other JNI
aoqi@0 1711 // functions. The wrapper is expected to unpack the arguments before
aoqi@0 1712 // passing them to the callee and perform checks before and after the
aoqi@0 1713 // native call to ensure that they GC_locker
aoqi@0 1714 // lock_critical/unlock_critical semantics are followed. Some other
aoqi@0 1715 // parts of JNI setup are skipped like the tear down of the JNI handle
aoqi@0 1716 // block and the check for pending exceptions it's impossible for them
aoqi@0 1717 // to be thrown.
aoqi@0 1718 //
aoqi@0 1719 // They are roughly structured like this:
aoqi@0 1720 // if (GC_locker::needs_gc())
aoqi@0 1721 // SharedRuntime::block_for_jni_critical();
aoqi@0 1722 // tranistion to thread_in_native
aoqi@0 1723 // unpack arrray arguments and call native entry point
aoqi@0 1724 // check for safepoint in progress
aoqi@0 1725 // check if any thread suspend flags are set
aoqi@0 1726 // call into JVM and possible unlock the JNI critical
aoqi@0 1727 // if a GC was suppressed while in the critical native.
aoqi@0 1728 // transition back to thread_in_Java
aoqi@0 1729 // return to caller
aoqi@0 1730 //
aoqi@0 1731 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
aoqi@0 1732 methodHandle method,
aoqi@0 1733 int compile_id,
aoqi@0 1734 BasicType *in_sig_bt,
aoqi@0 1735 VMRegPair *in_regs,
aoqi@0 1736 BasicType ret_type) {
aoqi@0 1737 #ifdef COMPILER2
aoqi@0 1738 if (method->is_method_handle_intrinsic()) {
aoqi@0 1739 vmIntrinsics::ID iid = method->intrinsic_id();
aoqi@0 1740 intptr_t start = (intptr_t)__ pc();
aoqi@0 1741 int vep_offset = ((intptr_t)__ pc()) - start;
aoqi@0 1742 gen_special_dispatch(masm,
aoqi@0 1743 method,
aoqi@0 1744 in_sig_bt,
aoqi@0 1745 in_regs);
aoqi@0 1746 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
aoqi@0 1747 __ flush();
aoqi@0 1748 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
aoqi@0 1749 return nmethod::new_native_nmethod(method,
aoqi@0 1750 compile_id,
aoqi@0 1751 masm->code(),
aoqi@0 1752 vep_offset,
aoqi@0 1753 frame_complete,
aoqi@0 1754 stack_slots / VMRegImpl::slots_per_word,
aoqi@0 1755 in_ByteSize(-1),
aoqi@0 1756 in_ByteSize(-1),
aoqi@0 1757 (OopMapSet*)NULL);
aoqi@0 1758 }
aoqi@0 1759
aoqi@0 1760 bool is_critical_native = true;
aoqi@0 1761 address native_func = method->critical_native_function();
aoqi@0 1762 if (native_func == NULL) {
aoqi@0 1763 native_func = method->native_function();
aoqi@0 1764 is_critical_native = false;
aoqi@0 1765 }
aoqi@0 1766 assert(native_func != NULL, "must have function");
aoqi@0 1767
aoqi@0 1768 // First, create signature for outgoing C call
aoqi@0 1769 // --------------------------------------------------------------------------
aoqi@0 1770
aoqi@0 1771 int total_in_args = method->size_of_parameters();
aoqi@0 1772 // We have received a description of where all the java args are located
aoqi@0 1773 // on entry to the wrapper. We need to convert these args to where
aoqi@0 1774 // the jni function will expect them. To figure out where they go
aoqi@0 1775 // we convert the java signature to a C signature by inserting
aoqi@0 1776 // the hidden arguments as arg[0] and possibly arg[1] (static method)
aoqi@0 1777 //
aoqi@0 1778 // Additionally, on ppc64 we must convert integers to longs in the C
aoqi@0 1779 // signature. We do this in advance in order to have no trouble with
aoqi@0 1780 // indexes into the bt-arrays.
aoqi@0 1781 // So convert the signature and registers now, and adjust the total number
aoqi@0 1782 // of in-arguments accordingly.
aoqi@0 1783 int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
aoqi@0 1784
aoqi@0 1785 // Calculate the total number of C arguments and create arrays for the
aoqi@0 1786 // signature and the outgoing registers.
aoqi@0 1787 // On ppc64, we have two arrays for the outgoing registers, because
aoqi@0 1788 // some floating-point arguments must be passed in registers _and_
aoqi@0 1789 // in stack locations.
aoqi@0 1790 bool method_is_static = method->is_static();
aoqi@0 1791 int total_c_args = i2l_argcnt;
aoqi@0 1792
aoqi@0 1793 if (!is_critical_native) {
aoqi@0 1794 int n_hidden_args = method_is_static ? 2 : 1;
aoqi@0 1795 total_c_args += n_hidden_args;
aoqi@0 1796 } else {
aoqi@0 1797 // No JNIEnv*, no this*, but unpacked arrays (base+length).
aoqi@0 1798 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1799 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 1800 total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
aoqi@0 1801 }
aoqi@0 1802 }
aoqi@0 1803 }
aoqi@0 1804
aoqi@0 1805 BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
aoqi@0 1806 VMRegPair *out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
aoqi@0 1807 VMRegPair *out_regs2 = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
aoqi@0 1808 BasicType* in_elem_bt = NULL;
aoqi@0 1809
aoqi@0 1810 // Create the signature for the C call:
aoqi@0 1811 // 1) add the JNIEnv*
aoqi@0 1812 // 2) add the class if the method is static
aoqi@0 1813 // 3) copy the rest of the incoming signature (shifted by the number of
aoqi@0 1814 // hidden arguments).
aoqi@0 1815
aoqi@0 1816 int argc = 0;
aoqi@0 1817 if (!is_critical_native) {
aoqi@0 1818 convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
aoqi@0 1819
aoqi@0 1820 out_sig_bt[argc++] = T_ADDRESS;
aoqi@0 1821 if (method->is_static()) {
aoqi@0 1822 out_sig_bt[argc++] = T_OBJECT;
aoqi@0 1823 }
aoqi@0 1824
aoqi@0 1825 for (int i = 0; i < total_in_args ; i++ ) {
aoqi@0 1826 out_sig_bt[argc++] = in_sig_bt[i];
aoqi@0 1827 }
aoqi@0 1828 } else {
aoqi@0 1829 Thread* THREAD = Thread::current();
aoqi@0 1830 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
aoqi@0 1831 SignatureStream ss(method->signature());
aoqi@0 1832 int o = 0;
aoqi@0 1833 for (int i = 0; i < total_in_args ; i++, o++) {
aoqi@0 1834 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 1835 // Arrays are passed as int, elem* pair
aoqi@0 1836 Symbol* atype = ss.as_symbol(CHECK_NULL);
aoqi@0 1837 const char* at = atype->as_C_string();
aoqi@0 1838 if (strlen(at) == 2) {
aoqi@0 1839 assert(at[0] == '[', "must be");
aoqi@0 1840 switch (at[1]) {
aoqi@0 1841 case 'B': in_elem_bt[o] = T_BYTE; break;
aoqi@0 1842 case 'C': in_elem_bt[o] = T_CHAR; break;
aoqi@0 1843 case 'D': in_elem_bt[o] = T_DOUBLE; break;
aoqi@0 1844 case 'F': in_elem_bt[o] = T_FLOAT; break;
aoqi@0 1845 case 'I': in_elem_bt[o] = T_INT; break;
aoqi@0 1846 case 'J': in_elem_bt[o] = T_LONG; break;
aoqi@0 1847 case 'S': in_elem_bt[o] = T_SHORT; break;
aoqi@0 1848 case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
aoqi@0 1849 default: ShouldNotReachHere();
aoqi@0 1850 }
aoqi@0 1851 }
aoqi@0 1852 } else {
aoqi@0 1853 in_elem_bt[o] = T_VOID;
aoqi@0 1854 switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
aoqi@0 1855 case T_BOOLEAN:
aoqi@0 1856 case T_CHAR:
aoqi@0 1857 case T_BYTE:
aoqi@0 1858 case T_SHORT:
aoqi@0 1859 case T_INT: in_elem_bt[++o] = T_VOID; break;
aoqi@0 1860 default: break;
aoqi@0 1861 }
aoqi@0 1862 }
aoqi@0 1863 if (in_sig_bt[i] != T_VOID) {
aoqi@0 1864 assert(in_sig_bt[i] == ss.type(), "must match");
aoqi@0 1865 ss.next();
aoqi@0 1866 }
aoqi@0 1867 }
aoqi@0 1868 assert(i2l_argcnt==o, "must match");
aoqi@0 1869
aoqi@0 1870 convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
aoqi@0 1871
aoqi@0 1872 for (int i = 0; i < total_in_args ; i++ ) {
aoqi@0 1873 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 1874 // Arrays are passed as int, elem* pair.
aoqi@0 1875 out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
aoqi@0 1876 out_sig_bt[argc++] = T_INT;
aoqi@0 1877 out_sig_bt[argc++] = T_ADDRESS;
aoqi@0 1878 } else {
aoqi@0 1879 out_sig_bt[argc++] = in_sig_bt[i];
aoqi@0 1880 }
aoqi@0 1881 }
aoqi@0 1882 }
aoqi@0 1883
aoqi@0 1884
aoqi@0 1885 // Compute the wrapper's frame size.
aoqi@0 1886 // --------------------------------------------------------------------------
aoqi@0 1887
aoqi@0 1888 // Now figure out where the args must be stored and how much stack space
aoqi@0 1889 // they require.
aoqi@0 1890 //
aoqi@0 1891 // Compute framesize for the wrapper. We need to handlize all oops in
aoqi@0 1892 // incoming registers.
aoqi@0 1893 //
aoqi@0 1894 // Calculate the total number of stack slots we will need:
aoqi@0 1895 // 1) abi requirements
aoqi@0 1896 // 2) outgoing arguments
aoqi@0 1897 // 3) space for inbound oop handle area
aoqi@0 1898 // 4) space for handlizing a klass if static method
aoqi@0 1899 // 5) space for a lock if synchronized method
aoqi@0 1900 // 6) workspace for saving return values, int <-> float reg moves, etc.
aoqi@0 1901 // 7) alignment
aoqi@0 1902 //
aoqi@0 1903 // Layout of the native wrapper frame:
aoqi@0 1904 // (stack grows upwards, memory grows downwards)
aoqi@0 1905 //
aoqi@0 1906 // NW [ABI_REG_ARGS] <-- 1) R1_SP
aoqi@0 1907 // [outgoing arguments] <-- 2) R1_SP + out_arg_slot_offset
aoqi@0 1908 // [oopHandle area] <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
aoqi@0 1909 // klass <-- 4) R1_SP + klass_offset
aoqi@0 1910 // lock <-- 5) R1_SP + lock_offset
aoqi@0 1911 // [workspace] <-- 6) R1_SP + workspace_offset
aoqi@0 1912 // [alignment] (optional) <-- 7)
aoqi@0 1913 // caller [JIT_TOP_ABI_48] <-- r_callers_sp
aoqi@0 1914 //
aoqi@0 1915 // - *_slot_offset Indicates offset from SP in number of stack slots.
aoqi@0 1916 // - *_offset Indicates offset from SP in bytes.
aoqi@0 1917
aoqi@0 1918 int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
aoqi@0 1919 + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
aoqi@0 1920
aoqi@0 1921 // Now the space for the inbound oop handle area.
aoqi@0 1922 int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
aoqi@0 1923 if (is_critical_native) {
aoqi@0 1924 // Critical natives may have to call out so they need a save area
aoqi@0 1925 // for register arguments.
aoqi@0 1926 int double_slots = 0;
aoqi@0 1927 int single_slots = 0;
aoqi@0 1928 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1929 if (in_regs[i].first()->is_Register()) {
aoqi@0 1930 const Register reg = in_regs[i].first()->as_Register();
aoqi@0 1931 switch (in_sig_bt[i]) {
aoqi@0 1932 case T_BOOLEAN:
aoqi@0 1933 case T_BYTE:
aoqi@0 1934 case T_SHORT:
aoqi@0 1935 case T_CHAR:
aoqi@0 1936 case T_INT: /*single_slots++;*/ break; // PPC64: pass ints as longs.
aoqi@0 1937 case T_ARRAY:
aoqi@0 1938 case T_LONG: double_slots++; break;
aoqi@0 1939 default: ShouldNotReachHere();
aoqi@0 1940 }
aoqi@0 1941 } else if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1942 switch (in_sig_bt[i]) {
aoqi@0 1943 case T_FLOAT: single_slots++; break;
aoqi@0 1944 case T_DOUBLE: double_slots++; break;
aoqi@0 1945 default: ShouldNotReachHere();
aoqi@0 1946 }
aoqi@0 1947 }
aoqi@0 1948 }
aoqi@0 1949 total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
aoqi@0 1950 }
aoqi@0 1951
aoqi@0 1952 int oop_handle_slot_offset = stack_slots;
aoqi@0 1953 stack_slots += total_save_slots; // 3)
aoqi@0 1954
aoqi@0 1955 int klass_slot_offset = 0;
aoqi@0 1956 int klass_offset = -1;
aoqi@0 1957 if (method_is_static && !is_critical_native) { // 4)
aoqi@0 1958 klass_slot_offset = stack_slots;
aoqi@0 1959 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
aoqi@0 1960 stack_slots += VMRegImpl::slots_per_word;
aoqi@0 1961 }
aoqi@0 1962
aoqi@0 1963 int lock_slot_offset = 0;
aoqi@0 1964 int lock_offset = -1;
aoqi@0 1965 if (method->is_synchronized()) { // 5)
aoqi@0 1966 lock_slot_offset = stack_slots;
aoqi@0 1967 lock_offset = lock_slot_offset * VMRegImpl::stack_slot_size;
aoqi@0 1968 stack_slots += VMRegImpl::slots_per_word;
aoqi@0 1969 }
aoqi@0 1970
aoqi@0 1971 int workspace_slot_offset = stack_slots; // 6)
aoqi@0 1972 stack_slots += 2;
aoqi@0 1973
aoqi@0 1974 // Now compute actual number of stack words we need.
aoqi@0 1975 // Rounding to make stack properly aligned.
aoqi@0 1976 stack_slots = round_to(stack_slots, // 7)
aoqi@0 1977 frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
aoqi@0 1978 int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
aoqi@0 1979
aoqi@0 1980
aoqi@0 1981 // Now we can start generating code.
aoqi@0 1982 // --------------------------------------------------------------------------
aoqi@0 1983
aoqi@0 1984 intptr_t start_pc = (intptr_t)__ pc();
aoqi@0 1985 intptr_t vep_start_pc;
aoqi@0 1986 intptr_t frame_done_pc;
aoqi@0 1987 intptr_t oopmap_pc;
aoqi@0 1988
aoqi@0 1989 Label ic_miss;
aoqi@0 1990 Label handle_pending_exception;
aoqi@0 1991
aoqi@0 1992 Register r_callers_sp = R21;
aoqi@0 1993 Register r_temp_1 = R22;
aoqi@0 1994 Register r_temp_2 = R23;
aoqi@0 1995 Register r_temp_3 = R24;
aoqi@0 1996 Register r_temp_4 = R25;
aoqi@0 1997 Register r_temp_5 = R26;
aoqi@0 1998 Register r_temp_6 = R27;
aoqi@0 1999 Register r_return_pc = R28;
aoqi@0 2000
aoqi@0 2001 Register r_carg1_jnienv = noreg;
aoqi@0 2002 Register r_carg2_classorobject = noreg;
aoqi@0 2003 if (!is_critical_native) {
aoqi@0 2004 r_carg1_jnienv = out_regs[0].first()->as_Register();
aoqi@0 2005 r_carg2_classorobject = out_regs[1].first()->as_Register();
aoqi@0 2006 }
aoqi@0 2007
aoqi@0 2008
aoqi@0 2009 // Generate the Unverified Entry Point (UEP).
aoqi@0 2010 // --------------------------------------------------------------------------
aoqi@0 2011 assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
aoqi@0 2012
aoqi@0 2013 // Check ic: object class == cached class?
aoqi@0 2014 if (!method_is_static) {
aoqi@0 2015 Register ic = as_Register(Matcher::inline_cache_reg_encode());
aoqi@0 2016 Register receiver_klass = r_temp_1;
aoqi@0 2017
aoqi@0 2018 __ cmpdi(CCR0, R3_ARG1, 0);
aoqi@0 2019 __ beq(CCR0, ic_miss);
aoqi@0 2020 __ verify_oop(R3_ARG1);
aoqi@0 2021 __ load_klass(receiver_klass, R3_ARG1);
aoqi@0 2022
aoqi@0 2023 __ cmpd(CCR0, receiver_klass, ic);
aoqi@0 2024 __ bne(CCR0, ic_miss);
aoqi@0 2025 }
aoqi@0 2026
aoqi@0 2027
aoqi@0 2028 // Generate the Verified Entry Point (VEP).
aoqi@0 2029 // --------------------------------------------------------------------------
aoqi@0 2030 vep_start_pc = (intptr_t)__ pc();
aoqi@0 2031
aoqi@0 2032 __ save_LR_CR(r_temp_1);
aoqi@0 2033 __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
aoqi@0 2034 __ mr(r_callers_sp, R1_SP); // Remember frame pointer.
aoqi@0 2035 __ push_frame(frame_size_in_bytes, r_temp_1); // Push the c2n adapter's frame.
aoqi@0 2036 frame_done_pc = (intptr_t)__ pc();
aoqi@0 2037
aoqi@0 2038 // Native nmethod wrappers never take possesion of the oop arguments.
aoqi@0 2039 // So the caller will gc the arguments.
aoqi@0 2040 // The only thing we need an oopMap for is if the call is static.
aoqi@0 2041 //
aoqi@0 2042 // An OopMap for lock (and class if static), and one for the VM call itself.
aoqi@0 2043 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 2044 OopMap *oop_map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 2045
aoqi@0 2046 if (is_critical_native) {
aoqi@0 2047 check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
aoqi@0 2048 }
aoqi@0 2049
aoqi@0 2050 // Move arguments from register/stack to register/stack.
aoqi@0 2051 // --------------------------------------------------------------------------
aoqi@0 2052 //
aoqi@0 2053 // We immediately shuffle the arguments so that for any vm call we have
aoqi@0 2054 // to make from here on out (sync slow path, jvmti, etc.) we will have
aoqi@0 2055 // captured the oops from our caller and have a valid oopMap for them.
aoqi@0 2056 //
aoqi@0 2057 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
aoqi@0 2058 // (derived from JavaThread* which is in R16_thread) and, if static,
aoqi@0 2059 // the class mirror instead of a receiver. This pretty much guarantees that
aoqi@0 2060 // register layout will not match. We ignore these extra arguments during
aoqi@0 2061 // the shuffle. The shuffle is described by the two calling convention
aoqi@0 2062 // vectors we have in our possession. We simply walk the java vector to
aoqi@0 2063 // get the source locations and the c vector to get the destinations.
aoqi@0 2064
aoqi@0 2065 // Record sp-based slot for receiver on stack for non-static methods.
aoqi@0 2066 int receiver_offset = -1;
aoqi@0 2067
aoqi@0 2068 // We move the arguments backward because the floating point registers
aoqi@0 2069 // destination will always be to a register with a greater or equal
aoqi@0 2070 // register number or the stack.
aoqi@0 2071 // in is the index of the incoming Java arguments
aoqi@0 2072 // out is the index of the outgoing C arguments
aoqi@0 2073
aoqi@0 2074 #ifdef ASSERT
aoqi@0 2075 bool reg_destroyed[RegisterImpl::number_of_registers];
aoqi@0 2076 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
aoqi@0 2077 for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
aoqi@0 2078 reg_destroyed[r] = false;
aoqi@0 2079 }
aoqi@0 2080 for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
aoqi@0 2081 freg_destroyed[f] = false;
aoqi@0 2082 }
aoqi@0 2083 #endif // ASSERT
aoqi@0 2084
aoqi@0 2085 for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
aoqi@0 2086
aoqi@0 2087 #ifdef ASSERT
aoqi@0 2088 if (in_regs[in].first()->is_Register()) {
aoqi@0 2089 assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
aoqi@0 2090 } else if (in_regs[in].first()->is_FloatRegister()) {
aoqi@0 2091 assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
aoqi@0 2092 }
aoqi@0 2093 if (out_regs[out].first()->is_Register()) {
aoqi@0 2094 reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
aoqi@0 2095 } else if (out_regs[out].first()->is_FloatRegister()) {
aoqi@0 2096 freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
aoqi@0 2097 }
aoqi@0 2098 if (out_regs2[out].first()->is_Register()) {
aoqi@0 2099 reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
aoqi@0 2100 } else if (out_regs2[out].first()->is_FloatRegister()) {
aoqi@0 2101 freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
aoqi@0 2102 }
aoqi@0 2103 #endif // ASSERT
aoqi@0 2104
aoqi@0 2105 switch (in_sig_bt[in]) {
aoqi@0 2106 case T_BOOLEAN:
aoqi@0 2107 case T_CHAR:
aoqi@0 2108 case T_BYTE:
aoqi@0 2109 case T_SHORT:
aoqi@0 2110 case T_INT:
aoqi@0 2111 guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
aoqi@0 2112 "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
aoqi@0 2113 break;
aoqi@0 2114 case T_LONG:
aoqi@0 2115 if (in_sig_bt[in+1] == T_VOID) {
aoqi@0 2116 long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
aoqi@0 2117 } else {
aoqi@0 2118 guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR ||
aoqi@0 2119 in_sig_bt[in+1] == T_BYTE || in_sig_bt[in+1] == T_SHORT ||
aoqi@0 2120 in_sig_bt[in+1] == T_INT,
aoqi@0 2121 "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
aoqi@0 2122 int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
aoqi@0 2123 }
aoqi@0 2124 break;
aoqi@0 2125 case T_ARRAY:
aoqi@0 2126 if (is_critical_native) {
aoqi@0 2127 int body_arg = out;
aoqi@0 2128 out -= 2; // Point to length arg. PPC64: pass ints as longs.
aoqi@0 2129 unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
aoqi@0 2130 r_callers_sp, r_temp_1, r_temp_2);
aoqi@0 2131 break;
aoqi@0 2132 }
aoqi@0 2133 case T_OBJECT:
aoqi@0 2134 assert(!is_critical_native, "no oop arguments");
aoqi@0 2135 object_move(masm, stack_slots,
aoqi@0 2136 oop_map, oop_handle_slot_offset,
aoqi@0 2137 ((in == 0) && (!method_is_static)), &receiver_offset,
aoqi@0 2138 in_regs[in], out_regs[out],
aoqi@0 2139 r_callers_sp, r_temp_1, r_temp_2);
aoqi@0 2140 break;
aoqi@0 2141 case T_VOID:
aoqi@0 2142 break;
aoqi@0 2143 case T_FLOAT:
aoqi@0 2144 float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
aoqi@0 2145 if (out_regs2[out].first()->is_valid()) {
aoqi@0 2146 float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
aoqi@0 2147 }
aoqi@0 2148 break;
aoqi@0 2149 case T_DOUBLE:
aoqi@0 2150 double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
aoqi@0 2151 if (out_regs2[out].first()->is_valid()) {
aoqi@0 2152 double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
aoqi@0 2153 }
aoqi@0 2154 break;
aoqi@0 2155 case T_ADDRESS:
aoqi@0 2156 fatal("found type (T_ADDRESS) in java args");
aoqi@0 2157 break;
aoqi@0 2158 default:
aoqi@0 2159 ShouldNotReachHere();
aoqi@0 2160 break;
aoqi@0 2161 }
aoqi@0 2162 }
aoqi@0 2163
aoqi@0 2164 // Pre-load a static method's oop into ARG2.
aoqi@0 2165 // Used both by locking code and the normal JNI call code.
aoqi@0 2166 if (method_is_static && !is_critical_native) {
aoqi@0 2167 __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
aoqi@0 2168 r_carg2_classorobject);
aoqi@0 2169
aoqi@0 2170 // Now handlize the static class mirror in carg2. It's known not-null.
aoqi@0 2171 __ std(r_carg2_classorobject, klass_offset, R1_SP);
aoqi@0 2172 oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
aoqi@0 2173 __ addi(r_carg2_classorobject, R1_SP, klass_offset);
aoqi@0 2174 }
aoqi@0 2175
aoqi@0 2176 // Get JNIEnv* which is first argument to native.
aoqi@0 2177 if (!is_critical_native) {
aoqi@0 2178 __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
aoqi@0 2179 }
aoqi@0 2180
aoqi@0 2181 // NOTE:
aoqi@0 2182 //
aoqi@0 2183 // We have all of the arguments setup at this point.
aoqi@0 2184 // We MUST NOT touch any outgoing regs from this point on.
aoqi@0 2185 // So if we must call out we must push a new frame.
aoqi@0 2186
aoqi@0 2187 // Get current pc for oopmap, and load it patchable relative to global toc.
aoqi@0 2188 oopmap_pc = (intptr_t) __ pc();
aoqi@0 2189 __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
aoqi@0 2190
aoqi@0 2191 // We use the same pc/oopMap repeatedly when we call out.
aoqi@0 2192 oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
aoqi@0 2193
aoqi@0 2194 // r_return_pc now has the pc loaded that we will use when we finally call
aoqi@0 2195 // to native.
aoqi@0 2196
aoqi@0 2197 // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
aoqi@0 2198 assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
aoqi@0 2199
aoqi@0 2200
aoqi@0 2201 # if 0
aoqi@0 2202 // DTrace method entry
aoqi@0 2203 # endif
aoqi@0 2204
aoqi@0 2205 // Lock a synchronized method.
aoqi@0 2206 // --------------------------------------------------------------------------
aoqi@0 2207
aoqi@0 2208 if (method->is_synchronized()) {
aoqi@0 2209 assert(!is_critical_native, "unhandled");
aoqi@0 2210 ConditionRegister r_flag = CCR1;
aoqi@0 2211 Register r_oop = r_temp_4;
aoqi@0 2212 const Register r_box = r_temp_5;
aoqi@0 2213 Label done, locked;
aoqi@0 2214
aoqi@0 2215 // Load the oop for the object or class. r_carg2_classorobject contains
aoqi@0 2216 // either the handlized oop from the incoming arguments or the handlized
aoqi@0 2217 // class mirror (if the method is static).
aoqi@0 2218 __ ld(r_oop, 0, r_carg2_classorobject);
aoqi@0 2219
aoqi@0 2220 // Get the lock box slot's address.
aoqi@0 2221 __ addi(r_box, R1_SP, lock_offset);
aoqi@0 2222
aoqi@0 2223 # ifdef ASSERT
aoqi@0 2224 if (UseBiasedLocking) {
aoqi@0 2225 // Making the box point to itself will make it clear it went unused
aoqi@0 2226 // but also be obviously invalid.
aoqi@0 2227 __ std(r_box, 0, r_box);
aoqi@0 2228 }
aoqi@0 2229 # endif // ASSERT
aoqi@0 2230
aoqi@0 2231 // Try fastpath for locking.
aoqi@0 2232 // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
aoqi@0 2233 __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
aoqi@0 2234 __ beq(r_flag, locked);
aoqi@0 2235
aoqi@0 2236 // None of the above fast optimizations worked so we have to get into the
aoqi@0 2237 // slow case of monitor enter. Inline a special case of call_VM that
aoqi@0 2238 // disallows any pending_exception.
aoqi@0 2239
aoqi@0 2240 // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
aoqi@0 2241 int frame_size = frame::abi_reg_args_size +
aoqi@0 2242 round_to(total_c_args * wordSize, frame::alignment_in_bytes);
aoqi@0 2243 __ mr(R11_scratch1, R1_SP);
aoqi@0 2244 RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
aoqi@0 2245
aoqi@0 2246 // Do the call.
aoqi@0 2247 __ set_last_Java_frame(R11_scratch1, r_return_pc);
aoqi@0 2248 assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
aoqi@0 2249 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
aoqi@0 2250 __ reset_last_Java_frame();
aoqi@0 2251
aoqi@0 2252 RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
aoqi@0 2253
aoqi@0 2254 __ asm_assert_mem8_is_zero(thread_(pending_exception),
aoqi@0 2255 "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
aoqi@0 2256
aoqi@0 2257 __ bind(locked);
aoqi@0 2258 }
aoqi@0 2259
aoqi@0 2260
aoqi@0 2261 // Publish thread state
aoqi@0 2262 // --------------------------------------------------------------------------
aoqi@0 2263
aoqi@0 2264 // Use that pc we placed in r_return_pc a while back as the current frame anchor.
aoqi@0 2265 __ set_last_Java_frame(R1_SP, r_return_pc);
aoqi@0 2266
aoqi@0 2267 // Transition from _thread_in_Java to _thread_in_native.
aoqi@0 2268 __ li(R0, _thread_in_native);
aoqi@0 2269 __ release();
aoqi@0 2270 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
aoqi@0 2271 __ stw(R0, thread_(thread_state));
aoqi@0 2272 if (UseMembar) {
aoqi@0 2273 __ fence();
aoqi@0 2274 }
aoqi@0 2275
aoqi@0 2276
aoqi@0 2277 // The JNI call
aoqi@0 2278 // --------------------------------------------------------------------------
aoqi@0 2279 #if defined(ABI_ELFv2)
aoqi@0 2280 __ call_c(native_func, relocInfo::runtime_call_type);
aoqi@0 2281 #else
aoqi@0 2282 FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
aoqi@0 2283 __ call_c(fd_native_method, relocInfo::runtime_call_type);
aoqi@0 2284 #endif
aoqi@0 2285
aoqi@0 2286
aoqi@0 2287 // Now, we are back from the native code.
aoqi@0 2288
aoqi@0 2289
aoqi@0 2290 // Unpack the native result.
aoqi@0 2291 // --------------------------------------------------------------------------
aoqi@0 2292
aoqi@0 2293 // For int-types, we do any needed sign-extension required.
aoqi@0 2294 // Care must be taken that the return values (R3_RET and F1_RET)
aoqi@0 2295 // will survive any VM calls for blocking or unlocking.
aoqi@0 2296 // An OOP result (handle) is done specially in the slow-path code.
aoqi@0 2297
aoqi@0 2298 switch (ret_type) {
aoqi@0 2299 case T_VOID: break; // Nothing to do!
aoqi@0 2300 case T_FLOAT: break; // Got it where we want it (unless slow-path).
aoqi@0 2301 case T_DOUBLE: break; // Got it where we want it (unless slow-path).
aoqi@0 2302 case T_LONG: break; // Got it where we want it (unless slow-path).
aoqi@0 2303 case T_OBJECT: break; // Really a handle.
aoqi@0 2304 // Cannot de-handlize until after reclaiming jvm_lock.
aoqi@0 2305 case T_ARRAY: break;
aoqi@0 2306
aoqi@0 2307 case T_BOOLEAN: { // 0 -> false(0); !0 -> true(1)
aoqi@0 2308 Label skip_modify;
aoqi@0 2309 __ cmpwi(CCR0, R3_RET, 0);
aoqi@0 2310 __ beq(CCR0, skip_modify);
aoqi@0 2311 __ li(R3_RET, 1);
aoqi@0 2312 __ bind(skip_modify);
aoqi@0 2313 break;
aoqi@0 2314 }
aoqi@0 2315 case T_BYTE: { // sign extension
aoqi@0 2316 __ extsb(R3_RET, R3_RET);
aoqi@0 2317 break;
aoqi@0 2318 }
aoqi@0 2319 case T_CHAR: { // unsigned result
aoqi@0 2320 __ andi(R3_RET, R3_RET, 0xffff);
aoqi@0 2321 break;
aoqi@0 2322 }
aoqi@0 2323 case T_SHORT: { // sign extension
aoqi@0 2324 __ extsh(R3_RET, R3_RET);
aoqi@0 2325 break;
aoqi@0 2326 }
aoqi@0 2327 case T_INT: // nothing to do
aoqi@0 2328 break;
aoqi@0 2329 default:
aoqi@0 2330 ShouldNotReachHere();
aoqi@0 2331 break;
aoqi@0 2332 }
aoqi@0 2333
aoqi@0 2334
aoqi@0 2335 // Publish thread state
aoqi@0 2336 // --------------------------------------------------------------------------
aoqi@0 2337
aoqi@0 2338 // Switch thread to "native transition" state before reading the
aoqi@0 2339 // synchronization state. This additional state is necessary because reading
aoqi@0 2340 // and testing the synchronization state is not atomic w.r.t. GC, as this
aoqi@0 2341 // scenario demonstrates:
aoqi@0 2342 // - Java thread A, in _thread_in_native state, loads _not_synchronized
aoqi@0 2343 // and is preempted.
aoqi@0 2344 // - VM thread changes sync state to synchronizing and suspends threads
aoqi@0 2345 // for GC.
aoqi@0 2346 // - Thread A is resumed to finish this native method, but doesn't block
aoqi@0 2347 // here since it didn't see any synchronization in progress, and escapes.
aoqi@0 2348
aoqi@0 2349 // Transition from _thread_in_native to _thread_in_native_trans.
aoqi@0 2350 __ li(R0, _thread_in_native_trans);
aoqi@0 2351 __ release();
aoqi@0 2352 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
aoqi@0 2353 __ stw(R0, thread_(thread_state));
aoqi@0 2354
aoqi@0 2355
aoqi@0 2356 // Must we block?
aoqi@0 2357 // --------------------------------------------------------------------------
aoqi@0 2358
aoqi@0 2359 // Block, if necessary, before resuming in _thread_in_Java state.
aoqi@0 2360 // In order for GC to work, don't clear the last_Java_sp until after blocking.
aoqi@0 2361 Label after_transition;
aoqi@0 2362 {
aoqi@0 2363 Label no_block, sync;
aoqi@0 2364
aoqi@0 2365 if (os::is_MP()) {
aoqi@0 2366 if (UseMembar) {
aoqi@0 2367 // Force this write out before the read below.
aoqi@0 2368 __ fence();
aoqi@0 2369 } else {
aoqi@0 2370 // Write serialization page so VM thread can do a pseudo remote membar.
aoqi@0 2371 // We use the current thread pointer to calculate a thread specific
aoqi@0 2372 // offset to write to within the page. This minimizes bus traffic
aoqi@0 2373 // due to cache line collision.
aoqi@0 2374 __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
aoqi@0 2375 }
aoqi@0 2376 }
aoqi@0 2377
aoqi@0 2378 Register sync_state_addr = r_temp_4;
aoqi@0 2379 Register sync_state = r_temp_5;
aoqi@0 2380 Register suspend_flags = r_temp_6;
aoqi@0 2381
aoqi@0 2382 __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
aoqi@0 2383
aoqi@0 2384 // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
aoqi@0 2385 __ lwz(sync_state, 0, sync_state_addr);
aoqi@0 2386
aoqi@0 2387 // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
aoqi@0 2388 __ lwz(suspend_flags, thread_(suspend_flags));
aoqi@0 2389
aoqi@0 2390 __ acquire();
aoqi@0 2391
aoqi@0 2392 Label do_safepoint;
aoqi@0 2393 // No synchronization in progress nor yet synchronized.
aoqi@0 2394 __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
aoqi@0 2395 // Not suspended.
aoqi@0 2396 __ cmpwi(CCR1, suspend_flags, 0);
aoqi@0 2397
aoqi@0 2398 __ bne(CCR0, sync);
aoqi@0 2399 __ beq(CCR1, no_block);
aoqi@0 2400
aoqi@0 2401 // Block. Save any potential method result value before the operation and
aoqi@0 2402 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
aoqi@0 2403 // lets us share the oopMap we used when we went native rather than create
aoqi@0 2404 // a distinct one for this pc.
aoqi@0 2405 __ bind(sync);
aoqi@0 2406
aoqi@0 2407 address entry_point = is_critical_native
aoqi@0 2408 ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
aoqi@0 2409 : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
aoqi@0 2410 save_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2411 __ call_VM_leaf(entry_point, R16_thread);
aoqi@0 2412 restore_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2413
aoqi@0 2414 if (is_critical_native) {
aoqi@0 2415 __ b(after_transition); // No thread state transition here.
aoqi@0 2416 }
aoqi@0 2417 __ bind(no_block);
aoqi@0 2418 }
aoqi@0 2419
aoqi@0 2420 // Publish thread state.
aoqi@0 2421 // --------------------------------------------------------------------------
aoqi@0 2422
aoqi@0 2423 // Thread state is thread_in_native_trans. Any safepoint blocking has
aoqi@0 2424 // already happened so we can now change state to _thread_in_Java.
aoqi@0 2425
aoqi@0 2426 // Transition from _thread_in_native_trans to _thread_in_Java.
aoqi@0 2427 __ li(R0, _thread_in_Java);
aoqi@0 2428 __ release();
aoqi@0 2429 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
aoqi@0 2430 __ stw(R0, thread_(thread_state));
aoqi@0 2431 if (UseMembar) {
aoqi@0 2432 __ fence();
aoqi@0 2433 }
aoqi@0 2434 __ bind(after_transition);
aoqi@0 2435
aoqi@0 2436 // Reguard any pages if necessary.
aoqi@0 2437 // --------------------------------------------------------------------------
aoqi@0 2438
aoqi@0 2439 Label no_reguard;
aoqi@0 2440 __ lwz(r_temp_1, thread_(stack_guard_state));
aoqi@0 2441 __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
aoqi@0 2442 __ bne(CCR0, no_reguard);
aoqi@0 2443
aoqi@0 2444 save_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2445 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
aoqi@0 2446 restore_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2447
aoqi@0 2448 __ bind(no_reguard);
aoqi@0 2449
aoqi@0 2450
aoqi@0 2451 // Unlock
aoqi@0 2452 // --------------------------------------------------------------------------
aoqi@0 2453
aoqi@0 2454 if (method->is_synchronized()) {
aoqi@0 2455
aoqi@0 2456 ConditionRegister r_flag = CCR1;
aoqi@0 2457 const Register r_oop = r_temp_4;
aoqi@0 2458 const Register r_box = r_temp_5;
aoqi@0 2459 const Register r_exception = r_temp_6;
aoqi@0 2460 Label done;
aoqi@0 2461
aoqi@0 2462 // Get oop and address of lock object box.
aoqi@0 2463 if (method_is_static) {
aoqi@0 2464 assert(klass_offset != -1, "");
aoqi@0 2465 __ ld(r_oop, klass_offset, R1_SP);
aoqi@0 2466 } else {
aoqi@0 2467 assert(receiver_offset != -1, "");
aoqi@0 2468 __ ld(r_oop, receiver_offset, R1_SP);
aoqi@0 2469 }
aoqi@0 2470 __ addi(r_box, R1_SP, lock_offset);
aoqi@0 2471
aoqi@0 2472 // Try fastpath for unlocking.
aoqi@0 2473 __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
aoqi@0 2474 __ beq(r_flag, done);
aoqi@0 2475
aoqi@0 2476 // Save and restore any potential method result value around the unlocking operation.
aoqi@0 2477 save_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2478
aoqi@0 2479 // Must save pending exception around the slow-path VM call. Since it's a
aoqi@0 2480 // leaf call, the pending exception (if any) can be kept in a register.
aoqi@0 2481 __ ld(r_exception, thread_(pending_exception));
aoqi@0 2482 assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
aoqi@0 2483 __ li(R0, 0);
aoqi@0 2484 __ std(R0, thread_(pending_exception));
aoqi@0 2485
aoqi@0 2486 // Slow case of monitor enter.
aoqi@0 2487 // Inline a special case of call_VM that disallows any pending_exception.
aoqi@0 2488 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
aoqi@0 2489
aoqi@0 2490 __ asm_assert_mem8_is_zero(thread_(pending_exception),
aoqi@0 2491 "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
aoqi@0 2492
aoqi@0 2493 restore_native_result(masm, ret_type, workspace_slot_offset);
aoqi@0 2494
aoqi@0 2495 // Check_forward_pending_exception jump to forward_exception if any pending
aoqi@0 2496 // exception is set. The forward_exception routine expects to see the
aoqi@0 2497 // exception in pending_exception and not in a register. Kind of clumsy,
aoqi@0 2498 // since all folks who branch to forward_exception must have tested
aoqi@0 2499 // pending_exception first and hence have it in a register already.
aoqi@0 2500 __ std(r_exception, thread_(pending_exception));
aoqi@0 2501
aoqi@0 2502 __ bind(done);
aoqi@0 2503 }
aoqi@0 2504
aoqi@0 2505 # if 0
aoqi@0 2506 // DTrace method exit
aoqi@0 2507 # endif
aoqi@0 2508
aoqi@0 2509 // Clear "last Java frame" SP and PC.
aoqi@0 2510 // --------------------------------------------------------------------------
aoqi@0 2511
aoqi@0 2512 __ reset_last_Java_frame();
aoqi@0 2513
aoqi@0 2514 // Unpack oop result.
aoqi@0 2515 // --------------------------------------------------------------------------
aoqi@0 2516
aoqi@0 2517 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
aoqi@0 2518 Label skip_unboxing;
aoqi@0 2519 __ cmpdi(CCR0, R3_RET, 0);
aoqi@0 2520 __ beq(CCR0, skip_unboxing);
aoqi@0 2521 __ ld(R3_RET, 0, R3_RET);
aoqi@0 2522 __ bind(skip_unboxing);
aoqi@0 2523 __ verify_oop(R3_RET);
aoqi@0 2524 }
aoqi@0 2525
aoqi@0 2526
aoqi@0 2527 // Reset handle block.
aoqi@0 2528 // --------------------------------------------------------------------------
aoqi@0 2529 if (!is_critical_native) {
aoqi@0 2530 __ ld(r_temp_1, thread_(active_handles));
aoqi@0 2531 // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
aoqi@0 2532 __ li(r_temp_2, 0);
aoqi@0 2533 __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
aoqi@0 2534
aoqi@0 2535
aoqi@0 2536 // Check for pending exceptions.
aoqi@0 2537 // --------------------------------------------------------------------------
aoqi@0 2538 __ ld(r_temp_2, thread_(pending_exception));
aoqi@0 2539 __ cmpdi(CCR0, r_temp_2, 0);
aoqi@0 2540 __ bne(CCR0, handle_pending_exception);
aoqi@0 2541 }
aoqi@0 2542
aoqi@0 2543 // Return
aoqi@0 2544 // --------------------------------------------------------------------------
aoqi@0 2545
aoqi@0 2546 __ pop_frame();
aoqi@0 2547 __ restore_LR_CR(R11);
aoqi@0 2548 __ blr();
aoqi@0 2549
aoqi@0 2550
aoqi@0 2551 // Handler for pending exceptions (out-of-line).
aoqi@0 2552 // --------------------------------------------------------------------------
aoqi@0 2553
aoqi@0 2554 // Since this is a native call, we know the proper exception handler
aoqi@0 2555 // is the empty function. We just pop this frame and then jump to
aoqi@0 2556 // forward_exception_entry.
aoqi@0 2557 if (!is_critical_native) {
aoqi@0 2558 __ align(InteriorEntryAlignment);
aoqi@0 2559 __ bind(handle_pending_exception);
aoqi@0 2560
aoqi@0 2561 __ pop_frame();
aoqi@0 2562 __ restore_LR_CR(R11);
aoqi@0 2563 __ b64_patchable((address)StubRoutines::forward_exception_entry(),
aoqi@0 2564 relocInfo::runtime_call_type);
aoqi@0 2565 }
aoqi@0 2566
aoqi@0 2567 // Handler for a cache miss (out-of-line).
aoqi@0 2568 // --------------------------------------------------------------------------
aoqi@0 2569
aoqi@0 2570 if (!method_is_static) {
aoqi@0 2571 __ align(InteriorEntryAlignment);
aoqi@0 2572 __ bind(ic_miss);
aoqi@0 2573
aoqi@0 2574 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
aoqi@0 2575 relocInfo::runtime_call_type);
aoqi@0 2576 }
aoqi@0 2577
aoqi@0 2578 // Done.
aoqi@0 2579 // --------------------------------------------------------------------------
aoqi@0 2580
aoqi@0 2581 __ flush();
aoqi@0 2582
aoqi@0 2583 nmethod *nm = nmethod::new_native_nmethod(method,
aoqi@0 2584 compile_id,
aoqi@0 2585 masm->code(),
aoqi@0 2586 vep_start_pc-start_pc,
aoqi@0 2587 frame_done_pc-start_pc,
aoqi@0 2588 stack_slots / VMRegImpl::slots_per_word,
aoqi@0 2589 (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
aoqi@0 2590 in_ByteSize(lock_offset),
aoqi@0 2591 oop_maps);
aoqi@0 2592
aoqi@0 2593 if (is_critical_native) {
aoqi@0 2594 nm->set_lazy_critical_native(true);
aoqi@0 2595 }
aoqi@0 2596
aoqi@0 2597 return nm;
aoqi@0 2598 #else
aoqi@0 2599 ShouldNotReachHere();
aoqi@0 2600 return NULL;
aoqi@0 2601 #endif // COMPILER2
aoqi@0 2602 }
aoqi@0 2603
aoqi@0 2604 // This function returns the adjust size (in number of words) to a c2i adapter
aoqi@0 2605 // activation for use during deoptimization.
aoqi@0 2606 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
aoqi@0 2607 return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
aoqi@0 2608 }
aoqi@0 2609
aoqi@0 2610 uint SharedRuntime::out_preserve_stack_slots() {
aoqi@0 2611 #ifdef COMPILER2
aoqi@0 2612 return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
aoqi@0 2613 #else
aoqi@0 2614 return 0;
aoqi@0 2615 #endif
aoqi@0 2616 }
aoqi@0 2617
aoqi@0 2618 #ifdef COMPILER2
aoqi@0 2619 // Frame generation for deopt and uncommon trap blobs.
aoqi@0 2620 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
aoqi@0 2621 /* Read */
aoqi@0 2622 Register unroll_block_reg,
aoqi@0 2623 /* Update */
aoqi@0 2624 Register frame_sizes_reg,
aoqi@0 2625 Register number_of_frames_reg,
aoqi@0 2626 Register pcs_reg,
aoqi@0 2627 /* Invalidate */
aoqi@0 2628 Register frame_size_reg,
aoqi@0 2629 Register pc_reg) {
aoqi@0 2630
aoqi@0 2631 __ ld(pc_reg, 0, pcs_reg);
aoqi@0 2632 __ ld(frame_size_reg, 0, frame_sizes_reg);
aoqi@0 2633 __ std(pc_reg, _abi(lr), R1_SP);
aoqi@0 2634 __ push_frame(frame_size_reg, R0/*tmp*/);
aoqi@0 2635 #ifdef CC_INTERP
aoqi@0 2636 __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
aoqi@0 2637 #else
aoqi@0 2638 #ifdef ASSERT
aoqi@0 2639 __ load_const_optimized(pc_reg, 0x5afe);
aoqi@0 2640 __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
aoqi@0 2641 #endif
aoqi@0 2642 __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
aoqi@0 2643 #endif // CC_INTERP
aoqi@0 2644 __ addi(number_of_frames_reg, number_of_frames_reg, -1);
aoqi@0 2645 __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
aoqi@0 2646 __ addi(pcs_reg, pcs_reg, wordSize);
aoqi@0 2647 }
aoqi@0 2648
aoqi@0 2649 // Loop through the UnrollBlock info and create new frames.
aoqi@0 2650 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
aoqi@0 2651 /* read */
aoqi@0 2652 Register unroll_block_reg,
aoqi@0 2653 /* invalidate */
aoqi@0 2654 Register frame_sizes_reg,
aoqi@0 2655 Register number_of_frames_reg,
aoqi@0 2656 Register pcs_reg,
aoqi@0 2657 Register frame_size_reg,
aoqi@0 2658 Register pc_reg) {
aoqi@0 2659 Label loop;
aoqi@0 2660
aoqi@0 2661 // _number_of_frames is of type int (deoptimization.hpp)
aoqi@0 2662 __ lwa(number_of_frames_reg,
aoqi@0 2663 Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
aoqi@0 2664 unroll_block_reg);
aoqi@0 2665 __ ld(pcs_reg,
aoqi@0 2666 Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
aoqi@0 2667 unroll_block_reg);
aoqi@0 2668 __ ld(frame_sizes_reg,
aoqi@0 2669 Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
aoqi@0 2670 unroll_block_reg);
aoqi@0 2671
aoqi@0 2672 // stack: (caller_of_deoptee, ...).
aoqi@0 2673
aoqi@0 2674 // At this point we either have an interpreter frame or a compiled
aoqi@0 2675 // frame on top of stack. If it is a compiled frame we push a new c2i
aoqi@0 2676 // adapter here
aoqi@0 2677
aoqi@0 2678 // Memorize top-frame stack-pointer.
aoqi@0 2679 __ mr(frame_size_reg/*old_sp*/, R1_SP);
aoqi@0 2680
aoqi@0 2681 // Resize interpreter top frame OR C2I adapter.
aoqi@0 2682
aoqi@0 2683 // At this moment, the top frame (which is the caller of the deoptee) is
aoqi@0 2684 // an interpreter frame or a newly pushed C2I adapter or an entry frame.
aoqi@0 2685 // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
aoqi@0 2686 // outgoing arguments.
aoqi@0 2687 //
aoqi@0 2688 // In order to push the interpreter frame for the deoptee, we need to
aoqi@0 2689 // resize the top frame such that we are able to place the deoptee's
aoqi@0 2690 // locals in the frame.
aoqi@0 2691 // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
aoqi@0 2692 // into a valid PARENT_IJAVA_FRAME_ABI.
aoqi@0 2693
aoqi@0 2694 __ lwa(R11_scratch1,
aoqi@0 2695 Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
aoqi@0 2696 unroll_block_reg);
aoqi@0 2697 __ neg(R11_scratch1, R11_scratch1);
aoqi@0 2698
aoqi@0 2699 // R11_scratch1 contains size of locals for frame resizing.
aoqi@0 2700 // R12_scratch2 contains top frame's lr.
aoqi@0 2701
aoqi@0 2702 // Resize frame by complete frame size prevents TOC from being
aoqi@0 2703 // overwritten by locals. A more stack space saving way would be
aoqi@0 2704 // to copy the TOC to its location in the new abi.
aoqi@0 2705 __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
aoqi@0 2706
aoqi@0 2707 // now, resize the frame
aoqi@0 2708 __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
aoqi@0 2709
aoqi@0 2710 // In the case where we have resized a c2i frame above, the optional
aoqi@0 2711 // alignment below the locals has size 32 (why?).
aoqi@0 2712 __ std(R12_scratch2, _abi(lr), R1_SP);
aoqi@0 2713
aoqi@0 2714 // Initialize initial_caller_sp.
aoqi@0 2715 #ifdef CC_INTERP
aoqi@0 2716 __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
aoqi@0 2717 #else
aoqi@0 2718 #ifdef ASSERT
aoqi@0 2719 __ load_const_optimized(pc_reg, 0x5afe);
aoqi@0 2720 __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
aoqi@0 2721 #endif
aoqi@0 2722 __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
aoqi@0 2723 #endif // CC_INTERP
aoqi@0 2724
aoqi@0 2725 #ifdef ASSERT
aoqi@0 2726 // Make sure that there is at least one entry in the array.
aoqi@0 2727 __ cmpdi(CCR0, number_of_frames_reg, 0);
aoqi@0 2728 __ asm_assert_ne("array_size must be > 0", 0x205);
aoqi@0 2729 #endif
aoqi@0 2730
aoqi@0 2731 // Now push the new interpreter frames.
aoqi@0 2732 //
aoqi@0 2733 __ bind(loop);
aoqi@0 2734 // Allocate a new frame, fill in the pc.
aoqi@0 2735 push_skeleton_frame(masm, deopt,
aoqi@0 2736 unroll_block_reg,
aoqi@0 2737 frame_sizes_reg,
aoqi@0 2738 number_of_frames_reg,
aoqi@0 2739 pcs_reg,
aoqi@0 2740 frame_size_reg,
aoqi@0 2741 pc_reg);
aoqi@0 2742 __ cmpdi(CCR0, number_of_frames_reg, 0);
aoqi@0 2743 __ bne(CCR0, loop);
aoqi@0 2744
aoqi@0 2745 // Get the return address pointing into the frame manager.
aoqi@0 2746 __ ld(R0, 0, pcs_reg);
aoqi@0 2747 // Store it in the top interpreter frame.
aoqi@0 2748 __ std(R0, _abi(lr), R1_SP);
aoqi@0 2749 // Initialize frame_manager_lr of interpreter top frame.
aoqi@0 2750 #ifdef CC_INTERP
aoqi@0 2751 __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
aoqi@0 2752 #endif
aoqi@0 2753 }
aoqi@0 2754 #endif
aoqi@0 2755
aoqi@0 2756 void SharedRuntime::generate_deopt_blob() {
aoqi@0 2757 // Allocate space for the code
aoqi@0 2758 ResourceMark rm;
aoqi@0 2759 // Setup code generation tools
aoqi@0 2760 CodeBuffer buffer("deopt_blob", 2048, 1024);
aoqi@0 2761 InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
aoqi@0 2762 Label exec_mode_initialized;
aoqi@0 2763 int frame_size_in_words;
aoqi@0 2764 OopMap* map = NULL;
aoqi@0 2765 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 2766
aoqi@0 2767 // size of ABI112 plus spill slots for R3_RET and F1_RET.
aoqi@0 2768 const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
aoqi@0 2769 const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
aoqi@0 2770 int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
aoqi@0 2771
aoqi@0 2772 const Register exec_mode_reg = R21_tmp1;
aoqi@0 2773
aoqi@0 2774 const address start = __ pc();
aoqi@0 2775
aoqi@0 2776 #ifdef COMPILER2
aoqi@0 2777 // --------------------------------------------------------------------------
aoqi@0 2778 // Prolog for non exception case!
aoqi@0 2779
aoqi@0 2780 // We have been called from the deopt handler of the deoptee.
aoqi@0 2781 //
aoqi@0 2782 // deoptee:
aoqi@0 2783 // ...
aoqi@0 2784 // call X
aoqi@0 2785 // ...
aoqi@0 2786 // deopt_handler: call_deopt_stub
aoqi@0 2787 // cur. return pc --> ...
aoqi@0 2788 //
aoqi@0 2789 // So currently SR_LR points behind the call in the deopt handler.
aoqi@0 2790 // We adjust it such that it points to the start of the deopt handler.
aoqi@0 2791 // The return_pc has been stored in the frame of the deoptee and
aoqi@0 2792 // will replace the address of the deopt_handler in the call
aoqi@0 2793 // to Deoptimization::fetch_unroll_info below.
aoqi@0 2794 // We can't grab a free register here, because all registers may
aoqi@0 2795 // contain live values, so let the RegisterSaver do the adjustment
aoqi@0 2796 // of the return pc.
aoqi@0 2797 const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
aoqi@0 2798
aoqi@0 2799 // Push the "unpack frame"
aoqi@0 2800 // Save everything in sight.
aoqi@0 2801 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
aoqi@0 2802 &first_frame_size_in_bytes,
aoqi@0 2803 /*generate_oop_map=*/ true,
aoqi@0 2804 return_pc_adjustment_no_exception,
aoqi@0 2805 RegisterSaver::return_pc_is_lr);
aoqi@0 2806 assert(map != NULL, "OopMap must have been created");
aoqi@0 2807
aoqi@0 2808 __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
aoqi@0 2809 // Save exec mode for unpack_frames.
aoqi@0 2810 __ b(exec_mode_initialized);
aoqi@0 2811
aoqi@0 2812 // --------------------------------------------------------------------------
aoqi@0 2813 // Prolog for exception case
aoqi@0 2814
aoqi@0 2815 // An exception is pending.
aoqi@0 2816 // We have been called with a return (interpreter) or a jump (exception blob).
aoqi@0 2817 //
aoqi@0 2818 // - R3_ARG1: exception oop
aoqi@0 2819 // - R4_ARG2: exception pc
aoqi@0 2820
aoqi@0 2821 int exception_offset = __ pc() - start;
aoqi@0 2822
aoqi@0 2823 BLOCK_COMMENT("Prolog for exception case");
aoqi@0 2824
aoqi@0 2825 // The RegisterSaves doesn't need to adjust the return pc for this situation.
aoqi@0 2826 const int return_pc_adjustment_exception = 0;
aoqi@0 2827
aoqi@0 2828 // Push the "unpack frame".
aoqi@0 2829 // Save everything in sight.
aoqi@0 2830 assert(R4 == R4_ARG2, "exception pc must be in r4");
aoqi@0 2831 RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
aoqi@0 2832 &first_frame_size_in_bytes,
aoqi@0 2833 /*generate_oop_map=*/ false,
aoqi@0 2834 return_pc_adjustment_exception,
aoqi@0 2835 RegisterSaver::return_pc_is_r4);
aoqi@0 2836
aoqi@0 2837 // Deopt during an exception. Save exec mode for unpack_frames.
aoqi@0 2838 __ li(exec_mode_reg, Deoptimization::Unpack_exception);
aoqi@0 2839
aoqi@0 2840 // Store exception oop and pc in thread (location known to GC).
aoqi@0 2841 // This is needed since the call to "fetch_unroll_info()" may safepoint.
aoqi@0 2842 __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
aoqi@0 2843 __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
aoqi@0 2844
aoqi@0 2845 // fall through
aoqi@0 2846
aoqi@0 2847 // --------------------------------------------------------------------------
aoqi@0 2848 __ BIND(exec_mode_initialized);
aoqi@0 2849
aoqi@0 2850 {
aoqi@0 2851 const Register unroll_block_reg = R22_tmp2;
aoqi@0 2852
aoqi@0 2853 // We need to set `last_Java_frame' because `fetch_unroll_info' will
aoqi@0 2854 // call `last_Java_frame()'. The value of the pc in the frame is not
aoqi@0 2855 // particularly important. It just needs to identify this blob.
aoqi@0 2856 __ set_last_Java_frame(R1_SP, noreg);
aoqi@0 2857
aoqi@0 2858 // With EscapeAnalysis turned on, this call may safepoint!
aoqi@0 2859 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
aoqi@0 2860 address calls_return_pc = __ last_calls_return_pc();
aoqi@0 2861 // Set an oopmap for the call site that describes all our saved registers.
aoqi@0 2862 oop_maps->add_gc_map(calls_return_pc - start, map);
aoqi@0 2863
aoqi@0 2864 __ reset_last_Java_frame();
aoqi@0 2865 // Save the return value.
aoqi@0 2866 __ mr(unroll_block_reg, R3_RET);
aoqi@0 2867
aoqi@0 2868 // Restore only the result registers that have been saved
aoqi@0 2869 // by save_volatile_registers(...).
aoqi@0 2870 RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
aoqi@0 2871
aoqi@0 2872 // In excp_deopt_mode, restore and clear exception oop which we
aoqi@0 2873 // stored in the thread during exception entry above. The exception
aoqi@0 2874 // oop will be the return value of this stub.
aoqi@0 2875 Label skip_restore_excp;
aoqi@0 2876 __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
aoqi@0 2877 __ bne(CCR0, skip_restore_excp);
aoqi@0 2878 __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
aoqi@0 2879 __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
aoqi@0 2880 __ li(R0, 0);
aoqi@0 2881 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
aoqi@0 2882 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
aoqi@0 2883 __ BIND(skip_restore_excp);
aoqi@0 2884
aoqi@0 2885 // reload narrro_oop_base
aoqi@0 2886 if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
aoqi@0 2887 __ load_const_optimized(R30, Universe::narrow_oop_base());
aoqi@0 2888 }
aoqi@0 2889
aoqi@0 2890 __ pop_frame();
aoqi@0 2891
aoqi@0 2892 // stack: (deoptee, optional i2c, caller of deoptee, ...).
aoqi@0 2893
aoqi@0 2894 // pop the deoptee's frame
aoqi@0 2895 __ pop_frame();
aoqi@0 2896
aoqi@0 2897 // stack: (caller_of_deoptee, ...).
aoqi@0 2898
aoqi@0 2899 // Loop through the `UnrollBlock' info and create interpreter frames.
aoqi@0 2900 push_skeleton_frames(masm, true/*deopt*/,
aoqi@0 2901 unroll_block_reg,
aoqi@0 2902 R23_tmp3,
aoqi@0 2903 R24_tmp4,
aoqi@0 2904 R25_tmp5,
aoqi@0 2905 R26_tmp6,
aoqi@0 2906 R27_tmp7);
aoqi@0 2907
aoqi@0 2908 // stack: (skeletal interpreter frame, ..., optional skeletal
aoqi@0 2909 // interpreter frame, optional c2i, caller of deoptee, ...).
aoqi@0 2910 }
aoqi@0 2911
aoqi@0 2912 // push an `unpack_frame' taking care of float / int return values.
aoqi@0 2913 __ push_frame(frame_size_in_bytes, R0/*tmp*/);
aoqi@0 2914
aoqi@0 2915 // stack: (unpack frame, skeletal interpreter frame, ..., optional
aoqi@0 2916 // skeletal interpreter frame, optional c2i, caller of deoptee,
aoqi@0 2917 // ...).
aoqi@0 2918
aoqi@0 2919 // Spill live volatile registers since we'll do a call.
aoqi@0 2920 __ std( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
aoqi@0 2921 __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
aoqi@0 2922
aoqi@0 2923 // Let the unpacker layout information in the skeletal frames just
aoqi@0 2924 // allocated.
aoqi@0 2925 __ get_PC_trash_LR(R3_RET);
aoqi@0 2926 __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
aoqi@0 2927 // This is a call to a LEAF method, so no oop map is required.
aoqi@0 2928 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
aoqi@0 2929 R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
aoqi@0 2930 __ reset_last_Java_frame();
aoqi@0 2931
aoqi@0 2932 // Restore the volatiles saved above.
aoqi@0 2933 __ ld( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP);
aoqi@0 2934 __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
aoqi@0 2935
aoqi@0 2936 // Pop the unpack frame.
aoqi@0 2937 __ pop_frame();
aoqi@0 2938 __ restore_LR_CR(R0);
aoqi@0 2939
aoqi@0 2940 // stack: (top interpreter frame, ..., optional interpreter frame,
aoqi@0 2941 // optional c2i, caller of deoptee, ...).
aoqi@0 2942
aoqi@0 2943 // Initialize R14_state.
aoqi@0 2944 #ifdef CC_INTERP
aoqi@0 2945 __ ld(R14_state, 0, R1_SP);
aoqi@0 2946 __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
aoqi@0 2947 // Also inititialize R15_prev_state.
aoqi@0 2948 __ restore_prev_state();
aoqi@0 2949 #else
aoqi@0 2950 __ restore_interpreter_state(R11_scratch1);
aoqi@0 2951 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
aoqi@0 2952 #endif // CC_INTERP
aoqi@0 2953
aoqi@0 2954
aoqi@0 2955 // Return to the interpreter entry point.
aoqi@0 2956 __ blr();
aoqi@0 2957 __ flush();
aoqi@0 2958 #else // COMPILER2
aoqi@0 2959 __ unimplemented("deopt blob needed only with compiler");
aoqi@0 2960 int exception_offset = __ pc() - start;
aoqi@0 2961 #endif // COMPILER2
aoqi@0 2962
aoqi@0 2963 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
aoqi@0 2964 }
aoqi@0 2965
aoqi@0 2966 #ifdef COMPILER2
aoqi@0 2967 void SharedRuntime::generate_uncommon_trap_blob() {
aoqi@0 2968 // Allocate space for the code.
aoqi@0 2969 ResourceMark rm;
aoqi@0 2970 // Setup code generation tools.
aoqi@0 2971 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
aoqi@0 2972 InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
aoqi@0 2973 address start = __ pc();
aoqi@0 2974
aoqi@0 2975 Register unroll_block_reg = R21_tmp1;
aoqi@0 2976 Register klass_index_reg = R22_tmp2;
aoqi@0 2977 Register unc_trap_reg = R23_tmp3;
aoqi@0 2978
aoqi@0 2979 OopMapSet* oop_maps = new OopMapSet();
aoqi@0 2980 int frame_size_in_bytes = frame::abi_reg_args_size;
aoqi@0 2981 OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
aoqi@0 2982
aoqi@0 2983 // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
aoqi@0 2984
aoqi@0 2985 // Push a dummy `unpack_frame' and call
aoqi@0 2986 // `Deoptimization::uncommon_trap' to pack the compiled frame into a
aoqi@0 2987 // vframe array and return the `UnrollBlock' information.
aoqi@0 2988
aoqi@0 2989 // Save LR to compiled frame.
aoqi@0 2990 __ save_LR_CR(R11_scratch1);
aoqi@0 2991
aoqi@0 2992 // Push an "uncommon_trap" frame.
aoqi@0 2993 __ push_frame_reg_args(0, R11_scratch1);
aoqi@0 2994
aoqi@0 2995 // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
aoqi@0 2996
aoqi@0 2997 // Set the `unpack_frame' as last_Java_frame.
aoqi@0 2998 // `Deoptimization::uncommon_trap' expects it and considers its
aoqi@0 2999 // sender frame as the deoptee frame.
aoqi@0 3000 // Remember the offset of the instruction whose address will be
aoqi@0 3001 // moved to R11_scratch1.
aoqi@0 3002 address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
aoqi@0 3003
aoqi@0 3004 __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
aoqi@0 3005
aoqi@0 3006 __ mr(klass_index_reg, R3);
aoqi@0 3007 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
aoqi@0 3008 R16_thread, klass_index_reg);
aoqi@0 3009
aoqi@0 3010 // Set an oopmap for the call site.
aoqi@0 3011 oop_maps->add_gc_map(gc_map_pc - start, map);
aoqi@0 3012
aoqi@0 3013 __ reset_last_Java_frame();
aoqi@0 3014
aoqi@0 3015 // Pop the `unpack frame'.
aoqi@0 3016 __ pop_frame();
aoqi@0 3017
aoqi@0 3018 // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
aoqi@0 3019
aoqi@0 3020 // Save the return value.
aoqi@0 3021 __ mr(unroll_block_reg, R3_RET);
aoqi@0 3022
aoqi@0 3023 // Pop the uncommon_trap frame.
aoqi@0 3024 __ pop_frame();
aoqi@0 3025
aoqi@0 3026 // stack: (caller_of_deoptee, ...).
aoqi@0 3027
aoqi@0 3028 // Allocate new interpreter frame(s) and possibly a c2i adapter
aoqi@0 3029 // frame.
aoqi@0 3030 push_skeleton_frames(masm, false/*deopt*/,
aoqi@0 3031 unroll_block_reg,
aoqi@0 3032 R22_tmp2,
aoqi@0 3033 R23_tmp3,
aoqi@0 3034 R24_tmp4,
aoqi@0 3035 R25_tmp5,
aoqi@0 3036 R26_tmp6);
aoqi@0 3037
aoqi@0 3038 // stack: (skeletal interpreter frame, ..., optional skeletal
aoqi@0 3039 // interpreter frame, optional c2i, caller of deoptee, ...).
aoqi@0 3040
aoqi@0 3041 // Push a dummy `unpack_frame' taking care of float return values.
aoqi@0 3042 // Call `Deoptimization::unpack_frames' to layout information in the
aoqi@0 3043 // interpreter frames just created.
aoqi@0 3044
aoqi@0 3045 // Push a simple "unpack frame" here.
aoqi@0 3046 __ push_frame_reg_args(0, R11_scratch1);
aoqi@0 3047
aoqi@0 3048 // stack: (unpack frame, skeletal interpreter frame, ..., optional
aoqi@0 3049 // skeletal interpreter frame, optional c2i, caller of deoptee,
aoqi@0 3050 // ...).
aoqi@0 3051
aoqi@0 3052 // Set the "unpack_frame" as last_Java_frame.
aoqi@0 3053 __ get_PC_trash_LR(R11_scratch1);
aoqi@0 3054 __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
aoqi@0 3055
aoqi@0 3056 // Indicate it is the uncommon trap case.
aoqi@0 3057 __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
aoqi@0 3058 // Let the unpacker layout information in the skeletal frames just
aoqi@0 3059 // allocated.
aoqi@0 3060 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
aoqi@0 3061 R16_thread, unc_trap_reg);
aoqi@0 3062
aoqi@0 3063 __ reset_last_Java_frame();
aoqi@0 3064 // Pop the `unpack frame'.
aoqi@0 3065 __ pop_frame();
aoqi@0 3066 // Restore LR from top interpreter frame.
aoqi@0 3067 __ restore_LR_CR(R11_scratch1);
aoqi@0 3068
aoqi@0 3069 // stack: (top interpreter frame, ..., optional interpreter frame,
aoqi@0 3070 // optional c2i, caller of deoptee, ...).
aoqi@0 3071
aoqi@0 3072 #ifdef CC_INTERP
aoqi@0 3073 // Initialize R14_state, ...
aoqi@0 3074 __ ld(R11_scratch1, 0, R1_SP);
aoqi@0 3075 __ addi(R14_state, R11_scratch1, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
aoqi@0 3076 // also initialize R15_prev_state.
aoqi@0 3077 __ restore_prev_state();
aoqi@0 3078 #else
aoqi@0 3079 __ restore_interpreter_state(R11_scratch1);
aoqi@0 3080 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
aoqi@0 3081 #endif // CC_INTERP
aoqi@0 3082
aoqi@0 3083 // Return to the interpreter entry point.
aoqi@0 3084 __ blr();
aoqi@0 3085
aoqi@0 3086 masm->flush();
aoqi@0 3087
aoqi@0 3088 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
aoqi@0 3089 }
aoqi@0 3090 #endif // COMPILER2
aoqi@0 3091
aoqi@0 3092 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
aoqi@0 3093 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
aoqi@0 3094 assert(StubRoutines::forward_exception_entry() != NULL,
aoqi@0 3095 "must be generated before");
aoqi@0 3096
aoqi@0 3097 ResourceMark rm;
aoqi@0 3098 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 3099 OopMap* map;
aoqi@0 3100
aoqi@0 3101 // Allocate space for the code. Setup code generation tools.
aoqi@0 3102 CodeBuffer buffer("handler_blob", 2048, 1024);
aoqi@0 3103 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3104
aoqi@0 3105 address start = __ pc();
aoqi@0 3106 int frame_size_in_bytes = 0;
aoqi@0 3107
aoqi@0 3108 RegisterSaver::ReturnPCLocation return_pc_location;
aoqi@0 3109 bool cause_return = (poll_type == POLL_AT_RETURN);
aoqi@0 3110 if (cause_return) {
aoqi@0 3111 // Nothing to do here. The frame has already been popped in MachEpilogNode.
aoqi@0 3112 // Register LR already contains the return pc.
aoqi@0 3113 return_pc_location = RegisterSaver::return_pc_is_lr;
aoqi@0 3114 } else {
aoqi@0 3115 // Use thread()->saved_exception_pc() as return pc.
aoqi@0 3116 return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
aoqi@0 3117 }
aoqi@0 3118
aoqi@0 3119 // Save registers, fpu state, and flags.
aoqi@0 3120 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
aoqi@0 3121 &frame_size_in_bytes,
aoqi@0 3122 /*generate_oop_map=*/ true,
aoqi@0 3123 /*return_pc_adjustment=*/0,
aoqi@0 3124 return_pc_location);
aoqi@0 3125
aoqi@0 3126 // The following is basically a call_VM. However, we need the precise
aoqi@0 3127 // address of the call in order to generate an oopmap. Hence, we do all the
aoqi@0 3128 // work outselves.
aoqi@0 3129 __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
aoqi@0 3130
aoqi@0 3131 // The return address must always be correct so that the frame constructor
aoqi@0 3132 // never sees an invalid pc.
aoqi@0 3133
aoqi@0 3134 // Do the call
aoqi@0 3135 __ call_VM_leaf(call_ptr, R16_thread);
aoqi@0 3136 address calls_return_pc = __ last_calls_return_pc();
aoqi@0 3137
aoqi@0 3138 // Set an oopmap for the call site. This oopmap will map all
aoqi@0 3139 // oop-registers and debug-info registers as callee-saved. This
aoqi@0 3140 // will allow deoptimization at this safepoint to find all possible
aoqi@0 3141 // debug-info recordings, as well as let GC find all oops.
aoqi@0 3142 oop_maps->add_gc_map(calls_return_pc - start, map);
aoqi@0 3143
aoqi@0 3144 Label noException;
aoqi@0 3145
aoqi@0 3146 // Clear the last Java frame.
aoqi@0 3147 __ reset_last_Java_frame();
aoqi@0 3148
aoqi@0 3149 BLOCK_COMMENT(" Check pending exception.");
aoqi@0 3150 const Register pending_exception = R0;
aoqi@0 3151 __ ld(pending_exception, thread_(pending_exception));
aoqi@0 3152 __ cmpdi(CCR0, pending_exception, 0);
aoqi@0 3153 __ beq(CCR0, noException);
aoqi@0 3154
aoqi@0 3155 // Exception pending
aoqi@0 3156 RegisterSaver::restore_live_registers_and_pop_frame(masm,
aoqi@0 3157 frame_size_in_bytes,
aoqi@0 3158 /*restore_ctr=*/true);
aoqi@0 3159
aoqi@0 3160 BLOCK_COMMENT(" Jump to forward_exception_entry.");
aoqi@0 3161 // Jump to forward_exception_entry, with the issuing PC in LR
aoqi@0 3162 // so it looks like the original nmethod called forward_exception_entry.
aoqi@0 3163 __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
aoqi@0 3164
aoqi@0 3165 // No exception case.
aoqi@0 3166 __ BIND(noException);
aoqi@0 3167
aoqi@0 3168
aoqi@0 3169 // Normal exit, restore registers and exit.
aoqi@0 3170 RegisterSaver::restore_live_registers_and_pop_frame(masm,
aoqi@0 3171 frame_size_in_bytes,
aoqi@0 3172 /*restore_ctr=*/true);
aoqi@0 3173
aoqi@0 3174 __ blr();
aoqi@0 3175
aoqi@0 3176 // Make sure all code is generated
aoqi@0 3177 masm->flush();
aoqi@0 3178
aoqi@0 3179 // Fill-out other meta info
aoqi@0 3180 // CodeBlob frame size is in words.
aoqi@0 3181 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
aoqi@0 3182 }
aoqi@0 3183
aoqi@0 3184 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
aoqi@0 3185 //
aoqi@0 3186 // Generate a stub that calls into the vm to find out the proper destination
aoqi@0 3187 // of a java call. All the argument registers are live at this point
aoqi@0 3188 // but since this is generic code we don't know what they are and the caller
aoqi@0 3189 // must do any gc of the args.
aoqi@0 3190 //
aoqi@0 3191 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
aoqi@0 3192
aoqi@0 3193 // allocate space for the code
aoqi@0 3194 ResourceMark rm;
aoqi@0 3195
aoqi@0 3196 CodeBuffer buffer(name, 1000, 512);
aoqi@0 3197 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3198
aoqi@0 3199 int frame_size_in_bytes;
aoqi@0 3200
aoqi@0 3201 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 3202 OopMap* map = NULL;
aoqi@0 3203
aoqi@0 3204 address start = __ pc();
aoqi@0 3205
aoqi@0 3206 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
aoqi@0 3207 &frame_size_in_bytes,
aoqi@0 3208 /*generate_oop_map*/ true,
aoqi@0 3209 /*return_pc_adjustment*/ 0,
aoqi@0 3210 RegisterSaver::return_pc_is_lr);
aoqi@0 3211
aoqi@0 3212 // Use noreg as last_Java_pc, the return pc will be reconstructed
aoqi@0 3213 // from the physical frame.
aoqi@0 3214 __ set_last_Java_frame(/*sp*/R1_SP, noreg);
aoqi@0 3215
aoqi@0 3216 int frame_complete = __ offset();
aoqi@0 3217
aoqi@0 3218 // Pass R19_method as 2nd (optional) argument, used by
aoqi@0 3219 // counter_overflow_stub.
aoqi@0 3220 __ call_VM_leaf(destination, R16_thread, R19_method);
aoqi@0 3221 address calls_return_pc = __ last_calls_return_pc();
aoqi@0 3222 // Set an oopmap for the call site.
aoqi@0 3223 // We need this not only for callee-saved registers, but also for volatile
aoqi@0 3224 // registers that the compiler might be keeping live across a safepoint.
aoqi@0 3225 // Create the oopmap for the call's return pc.
aoqi@0 3226 oop_maps->add_gc_map(calls_return_pc - start, map);
aoqi@0 3227
aoqi@0 3228 // R3_RET contains the address we are going to jump to assuming no exception got installed.
aoqi@0 3229
aoqi@0 3230 // clear last_Java_sp
aoqi@0 3231 __ reset_last_Java_frame();
aoqi@0 3232
aoqi@0 3233 // Check for pending exceptions.
aoqi@0 3234 BLOCK_COMMENT("Check for pending exceptions.");
aoqi@0 3235 Label pending;
aoqi@0 3236 __ ld(R11_scratch1, thread_(pending_exception));
aoqi@0 3237 __ cmpdi(CCR0, R11_scratch1, 0);
aoqi@0 3238 __ bne(CCR0, pending);
aoqi@0 3239
aoqi@0 3240 __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
aoqi@0 3241
aoqi@0 3242 RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
aoqi@0 3243
aoqi@0 3244 // Get the returned method.
aoqi@0 3245 __ get_vm_result_2(R19_method);
aoqi@0 3246
aoqi@0 3247 __ bctr();
aoqi@0 3248
aoqi@0 3249
aoqi@0 3250 // Pending exception after the safepoint.
aoqi@0 3251 __ BIND(pending);
aoqi@0 3252
aoqi@0 3253 RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
aoqi@0 3254
aoqi@0 3255 // exception pending => remove activation and forward to exception handler
aoqi@0 3256
aoqi@0 3257 __ li(R11_scratch1, 0);
aoqi@0 3258 __ ld(R3_ARG1, thread_(pending_exception));
aoqi@0 3259 __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
aoqi@0 3260 __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
aoqi@0 3261
aoqi@0 3262 // -------------
aoqi@0 3263 // Make sure all code is generated.
aoqi@0 3264 masm->flush();
aoqi@0 3265
aoqi@0 3266 // return the blob
aoqi@0 3267 // frame_size_words or bytes??
aoqi@0 3268 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
aoqi@0 3269 oop_maps, true);
aoqi@0 3270 }

mercurial