src/share/vm/utilities/growableArray.hpp

Thu, 11 Feb 2010 15:52:19 -0800

author
iveresov
date
Thu, 11 Feb 2010 15:52:19 -0800
changeset 1696
0414c1049f15
parent 1515
7c57aead6d3e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6923991: G1: improve scalability of RSet scanning
Summary: Implemented block-based work stealing. Moved copying during the rset scanning phase to the main copying phase. Made the size of rset table depend on the region size.
Reviewed-by: apetrusenko, tonyp

duke@435 1 /*
xdono@905 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // A growable array.
duke@435 26
duke@435 27 /*************************************************************************/
duke@435 28 /* */
duke@435 29 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
duke@435 30 /* */
duke@435 31 /* Should you use GrowableArrays to contain handles you must be certain */
duke@435 32 /* the the GrowableArray does not outlive the HandleMark that contains */
duke@435 33 /* the handles. Since GrowableArrays are typically resource allocated */
duke@435 34 /* the following is an example of INCORRECT CODE, */
duke@435 35 /* */
duke@435 36 /* ResourceMark rm; */
duke@435 37 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
duke@435 38 /* if (blah) { */
duke@435 39 /* while (...) { */
duke@435 40 /* HandleMark hm; */
duke@435 41 /* ... */
duke@435 42 /* Handle h(THREAD, some_oop); */
duke@435 43 /* arr->append(h); */
duke@435 44 /* } */
duke@435 45 /* } */
duke@435 46 /* if (arr->length() != 0 ) { */
duke@435 47 /* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
duke@435 48 /* ... */
duke@435 49 /* } */
duke@435 50 /* */
duke@435 51 /* If the GrowableArrays you are creating is C_Heap allocated then it */
duke@435 52 /* hould not old handles since the handles could trivially try and */
duke@435 53 /* outlive their HandleMark. In some situations you might need to do */
duke@435 54 /* this and it would be legal but be very careful and see if you can do */
duke@435 55 /* the code in some other manner. */
duke@435 56 /* */
duke@435 57 /*************************************************************************/
duke@435 58
duke@435 59 // To call default constructor the placement operator new() is used.
duke@435 60 // It should be empty (it only returns the passed void* pointer).
duke@435 61 // The definition of placement operator new(size_t, void*) in the <new>.
duke@435 62
duke@435 63 #include <new>
duke@435 64
duke@435 65 // Need the correct linkage to call qsort without warnings
duke@435 66 extern "C" {
duke@435 67 typedef int (*_sort_Fn)(const void *, const void *);
duke@435 68 }
duke@435 69
duke@435 70 class GenericGrowableArray : public ResourceObj {
duke@435 71 protected:
duke@435 72 int _len; // current length
duke@435 73 int _max; // maximum length
duke@435 74 Arena* _arena; // Indicates where allocation occurs:
duke@435 75 // 0 means default ResourceArea
duke@435 76 // 1 means on C heap
duke@435 77 // otherwise, allocate in _arena
duke@435 78 #ifdef ASSERT
duke@435 79 int _nesting; // resource area nesting at creation
duke@435 80 void set_nesting();
duke@435 81 void check_nesting();
duke@435 82 #else
duke@435 83 #define set_nesting();
duke@435 84 #define check_nesting();
duke@435 85 #endif
duke@435 86
duke@435 87 // Where are we going to allocate memory?
duke@435 88 bool on_C_heap() { return _arena == (Arena*)1; }
duke@435 89 bool on_stack () { return _arena == NULL; }
duke@435 90 bool on_arena () { return _arena > (Arena*)1; }
duke@435 91
duke@435 92 // This GA will use the resource stack for storage if c_heap==false,
duke@435 93 // Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
duke@435 94 GenericGrowableArray(int initial_size, int initial_len, bool c_heap) {
duke@435 95 _len = initial_len;
duke@435 96 _max = initial_size;
duke@435 97 assert(_len >= 0 && _len <= _max, "initial_len too big");
duke@435 98 _arena = (c_heap ? (Arena*)1 : NULL);
duke@435 99 set_nesting();
duke@435 100 assert(!c_heap || allocated_on_C_heap(), "growable array must be on C heap if elements are");
duke@435 101 }
duke@435 102
duke@435 103 // This GA will use the given arena for storage.
duke@435 104 // Consider using new(arena) GrowableArray<T> to allocate the header.
duke@435 105 GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
duke@435 106 _len = initial_len;
duke@435 107 _max = initial_size;
duke@435 108 assert(_len >= 0 && _len <= _max, "initial_len too big");
duke@435 109 _arena = arena;
duke@435 110 assert(on_arena(), "arena has taken on reserved value 0 or 1");
duke@435 111 }
duke@435 112
duke@435 113 void* raw_allocate(int elementSize);
jrose@867 114
jrose@867 115 // some uses pass the Thread explicitly for speed (4990299 tuning)
jrose@867 116 void* raw_allocate(Thread* thread, int elementSize) {
jrose@867 117 assert(on_stack(), "fast ResourceObj path only");
jrose@867 118 return (void*)resource_allocate_bytes(thread, elementSize * _max);
jrose@867 119 }
duke@435 120 };
duke@435 121
duke@435 122 template<class E> class GrowableArray : public GenericGrowableArray {
duke@435 123 private:
duke@435 124 E* _data; // data array
duke@435 125
duke@435 126 void grow(int j);
duke@435 127 void raw_at_put_grow(int i, const E& p, const E& fill);
duke@435 128 void clear_and_deallocate();
duke@435 129 public:
jrose@867 130 GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
jrose@867 131 _data = (E*)raw_allocate(thread, sizeof(E));
jrose@867 132 for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
jrose@867 133 }
jrose@867 134
duke@435 135 GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) {
duke@435 136 _data = (E*)raw_allocate(sizeof(E));
duke@435 137 for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 138 }
duke@435 139
duke@435 140 GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) {
duke@435 141 _data = (E*)raw_allocate(sizeof(E));
duke@435 142 int i = 0;
duke@435 143 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
duke@435 144 for (; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 145 }
duke@435 146
duke@435 147 GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
duke@435 148 _data = (E*)raw_allocate(sizeof(E));
duke@435 149 int i = 0;
duke@435 150 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
duke@435 151 for (; i < _max; i++) ::new ((void*)&_data[i]) E();
duke@435 152 }
duke@435 153
duke@435 154 GrowableArray() : GenericGrowableArray(2, 0, false) {
duke@435 155 _data = (E*)raw_allocate(sizeof(E));
duke@435 156 ::new ((void*)&_data[0]) E();
duke@435 157 ::new ((void*)&_data[1]) E();
duke@435 158 }
duke@435 159
duke@435 160 // Does nothing for resource and arena objects
duke@435 161 ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
duke@435 162
duke@435 163 void clear() { _len = 0; }
duke@435 164 int length() const { return _len; }
duke@435 165 void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
duke@435 166 bool is_empty() const { return _len == 0; }
duke@435 167 bool is_nonempty() const { return _len != 0; }
duke@435 168 bool is_full() const { return _len == _max; }
duke@435 169 DEBUG_ONLY(E* data_addr() const { return _data; })
duke@435 170
duke@435 171 void print();
duke@435 172
jrose@867 173 int append(const E& elem) {
duke@435 174 check_nesting();
duke@435 175 if (_len == _max) grow(_len);
jrose@867 176 int idx = _len++;
jrose@867 177 _data[idx] = elem;
jrose@867 178 return idx;
duke@435 179 }
duke@435 180
duke@435 181 void append_if_missing(const E& elem) {
duke@435 182 if (!contains(elem)) append(elem);
duke@435 183 }
duke@435 184
duke@435 185 E at(int i) const {
duke@435 186 assert(0 <= i && i < _len, "illegal index");
duke@435 187 return _data[i];
duke@435 188 }
duke@435 189
duke@435 190 E* adr_at(int i) const {
duke@435 191 assert(0 <= i && i < _len, "illegal index");
duke@435 192 return &_data[i];
duke@435 193 }
duke@435 194
duke@435 195 E first() const {
duke@435 196 assert(_len > 0, "empty list");
duke@435 197 return _data[0];
duke@435 198 }
duke@435 199
duke@435 200 E top() const {
duke@435 201 assert(_len > 0, "empty list");
duke@435 202 return _data[_len-1];
duke@435 203 }
duke@435 204
duke@435 205 void push(const E& elem) { append(elem); }
duke@435 206
duke@435 207 E pop() {
duke@435 208 assert(_len > 0, "empty list");
duke@435 209 return _data[--_len];
duke@435 210 }
duke@435 211
duke@435 212 void at_put(int i, const E& elem) {
duke@435 213 assert(0 <= i && i < _len, "illegal index");
duke@435 214 _data[i] = elem;
duke@435 215 }
duke@435 216
duke@435 217 E at_grow(int i, const E& fill = E()) {
duke@435 218 assert(0 <= i, "negative index");
duke@435 219 check_nesting();
duke@435 220 if (i >= _len) {
duke@435 221 if (i >= _max) grow(i);
duke@435 222 for (int j = _len; j <= i; j++)
duke@435 223 _data[j] = fill;
duke@435 224 _len = i+1;
duke@435 225 }
duke@435 226 return _data[i];
duke@435 227 }
duke@435 228
duke@435 229 void at_put_grow(int i, const E& elem, const E& fill = E()) {
duke@435 230 assert(0 <= i, "negative index");
duke@435 231 check_nesting();
duke@435 232 raw_at_put_grow(i, elem, fill);
duke@435 233 }
duke@435 234
duke@435 235 bool contains(const E& elem) const {
duke@435 236 for (int i = 0; i < _len; i++) {
duke@435 237 if (_data[i] == elem) return true;
duke@435 238 }
duke@435 239 return false;
duke@435 240 }
duke@435 241
duke@435 242 int find(const E& elem) const {
duke@435 243 for (int i = 0; i < _len; i++) {
duke@435 244 if (_data[i] == elem) return i;
duke@435 245 }
duke@435 246 return -1;
duke@435 247 }
duke@435 248
duke@435 249 int find(void* token, bool f(void*, E)) const {
duke@435 250 for (int i = 0; i < _len; i++) {
duke@435 251 if (f(token, _data[i])) return i;
duke@435 252 }
duke@435 253 return -1;
duke@435 254 }
duke@435 255
duke@435 256 int find_at_end(void* token, bool f(void*, E)) const {
duke@435 257 // start at the end of the array
duke@435 258 for (int i = _len-1; i >= 0; i--) {
duke@435 259 if (f(token, _data[i])) return i;
duke@435 260 }
duke@435 261 return -1;
duke@435 262 }
duke@435 263
duke@435 264 void remove(const E& elem) {
duke@435 265 for (int i = 0; i < _len; i++) {
duke@435 266 if (_data[i] == elem) {
duke@435 267 for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
duke@435 268 _len--;
duke@435 269 return;
duke@435 270 }
duke@435 271 }
duke@435 272 ShouldNotReachHere();
duke@435 273 }
duke@435 274
duke@435 275 void remove_at(int index) {
duke@435 276 assert(0 <= index && index < _len, "illegal index");
duke@435 277 for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
duke@435 278 _len--;
duke@435 279 }
duke@435 280
never@1515 281 // inserts the given element before the element at index i
never@1515 282 void insert_before(const int idx, const E& elem) {
never@1515 283 check_nesting();
never@1515 284 if (_len == _max) grow(_len);
never@1515 285 for (int j = _len - 1; j >= idx; j--) {
never@1515 286 _data[j + 1] = _data[j];
never@1515 287 }
never@1515 288 _len++;
never@1515 289 _data[idx] = elem;
never@1515 290 }
never@1515 291
duke@435 292 void appendAll(const GrowableArray<E>* l) {
duke@435 293 for (int i = 0; i < l->_len; i++) {
duke@435 294 raw_at_put_grow(_len, l->_data[i], 0);
duke@435 295 }
duke@435 296 }
duke@435 297
duke@435 298 void sort(int f(E*,E*)) {
duke@435 299 qsort(_data, length(), sizeof(E), (_sort_Fn)f);
duke@435 300 }
duke@435 301 // sort by fixed-stride sub arrays:
duke@435 302 void sort(int f(E*,E*), int stride) {
duke@435 303 qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
duke@435 304 }
duke@435 305 };
duke@435 306
duke@435 307 // Global GrowableArray methods (one instance in the library per each 'E' type).
duke@435 308
duke@435 309 template<class E> void GrowableArray<E>::grow(int j) {
duke@435 310 // grow the array by doubling its size (amortized growth)
duke@435 311 int old_max = _max;
duke@435 312 if (_max == 0) _max = 1; // prevent endless loop
duke@435 313 while (j >= _max) _max = _max*2;
duke@435 314 // j < _max
duke@435 315 E* newData = (E*)raw_allocate(sizeof(E));
duke@435 316 int i = 0;
duke@435 317 for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
duke@435 318 for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
duke@435 319 for (i = 0; i < old_max; i++) _data[i].~E();
duke@435 320 if (on_C_heap() && _data != NULL) {
duke@435 321 FreeHeap(_data);
duke@435 322 }
duke@435 323 _data = newData;
duke@435 324 }
duke@435 325
duke@435 326 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
duke@435 327 if (i >= _len) {
duke@435 328 if (i >= _max) grow(i);
duke@435 329 for (int j = _len; j < i; j++)
duke@435 330 _data[j] = fill;
duke@435 331 _len = i+1;
duke@435 332 }
duke@435 333 _data[i] = p;
duke@435 334 }
duke@435 335
duke@435 336 // This function clears and deallocate the data in the growable array that
duke@435 337 // has been allocated on the C heap. It's not public - called by the
duke@435 338 // destructor.
duke@435 339 template<class E> void GrowableArray<E>::clear_and_deallocate() {
duke@435 340 assert(on_C_heap(),
duke@435 341 "clear_and_deallocate should only be called when on C heap");
duke@435 342 clear();
duke@435 343 if (_data != NULL) {
duke@435 344 for (int i = 0; i < _max; i++) _data[i].~E();
duke@435 345 FreeHeap(_data);
duke@435 346 _data = NULL;
duke@435 347 }
duke@435 348 }
duke@435 349
duke@435 350 template<class E> void GrowableArray<E>::print() {
duke@435 351 tty->print("Growable Array " INTPTR_FORMAT, this);
duke@435 352 tty->print(": length %ld (_max %ld) { ", _len, _max);
duke@435 353 for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
duke@435 354 tty->print("}\n");
duke@435 355 }

mercurial