src/share/vm/opto/loopnode.cpp

Wed, 16 Jul 2008 16:04:39 -0700

author
kvn
date
Wed, 16 Jul 2008 16:04:39 -0700
changeset 682
02a35ad4adf8
parent 670
9c2ecc2ffb12
child 728
c3e045194476
permissions
-rw-r--r--

6723160: Nightly failure: Error: meet not symmetric
Summary: Add missing _instance_id settings and other EA fixes.
Reviewed-by: rasbold

duke@435 1 /*
xdono@631 2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_loopnode.cpp.incl"
duke@435 27
duke@435 28 //=============================================================================
duke@435 29 //------------------------------is_loop_iv-------------------------------------
duke@435 30 // Determine if a node is Counted loop induction variable.
duke@435 31 // The method is declared in node.hpp.
duke@435 32 const Node* Node::is_loop_iv() const {
duke@435 33 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
duke@435 34 this->as_Phi()->region()->is_CountedLoop() &&
duke@435 35 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
duke@435 36 return this;
duke@435 37 } else {
duke@435 38 return NULL;
duke@435 39 }
duke@435 40 }
duke@435 41
duke@435 42 //=============================================================================
duke@435 43 //------------------------------dump_spec--------------------------------------
duke@435 44 // Dump special per-node info
duke@435 45 #ifndef PRODUCT
duke@435 46 void LoopNode::dump_spec(outputStream *st) const {
duke@435 47 if( is_inner_loop () ) st->print( "inner " );
duke@435 48 if( is_partial_peel_loop () ) st->print( "partial_peel " );
duke@435 49 if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
duke@435 50 }
duke@435 51 #endif
duke@435 52
duke@435 53 //------------------------------get_early_ctrl---------------------------------
duke@435 54 // Compute earliest legal control
duke@435 55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
duke@435 56 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
duke@435 57 uint i;
duke@435 58 Node *early;
duke@435 59 if( n->in(0) ) {
duke@435 60 early = n->in(0);
duke@435 61 if( !early->is_CFG() ) // Might be a non-CFG multi-def
duke@435 62 early = get_ctrl(early); // So treat input as a straight data input
duke@435 63 i = 1;
duke@435 64 } else {
duke@435 65 early = get_ctrl(n->in(1));
duke@435 66 i = 2;
duke@435 67 }
duke@435 68 uint e_d = dom_depth(early);
duke@435 69 assert( early, "" );
duke@435 70 for( ; i < n->req(); i++ ) {
duke@435 71 Node *cin = get_ctrl(n->in(i));
duke@435 72 assert( cin, "" );
duke@435 73 // Keep deepest dominator depth
duke@435 74 uint c_d = dom_depth(cin);
duke@435 75 if( c_d > e_d ) { // Deeper guy?
duke@435 76 early = cin; // Keep deepest found so far
duke@435 77 e_d = c_d;
duke@435 78 } else if( c_d == e_d && // Same depth?
duke@435 79 early != cin ) { // If not equal, must use slower algorithm
duke@435 80 // If same depth but not equal, one _must_ dominate the other
duke@435 81 // and we want the deeper (i.e., dominated) guy.
duke@435 82 Node *n1 = early;
duke@435 83 Node *n2 = cin;
duke@435 84 while( 1 ) {
duke@435 85 n1 = idom(n1); // Walk up until break cycle
duke@435 86 n2 = idom(n2);
duke@435 87 if( n1 == cin || // Walked early up to cin
duke@435 88 dom_depth(n2) < c_d )
duke@435 89 break; // early is deeper; keep him
duke@435 90 if( n2 == early || // Walked cin up to early
duke@435 91 dom_depth(n1) < c_d ) {
duke@435 92 early = cin; // cin is deeper; keep him
duke@435 93 break;
duke@435 94 }
duke@435 95 }
duke@435 96 e_d = dom_depth(early); // Reset depth register cache
duke@435 97 }
duke@435 98 }
duke@435 99
duke@435 100 // Return earliest legal location
duke@435 101 assert(early == find_non_split_ctrl(early), "unexpected early control");
duke@435 102
duke@435 103 return early;
duke@435 104 }
duke@435 105
duke@435 106 //------------------------------set_early_ctrl---------------------------------
duke@435 107 // Set earliest legal control
duke@435 108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
duke@435 109 Node *early = get_early_ctrl(n);
duke@435 110
duke@435 111 // Record earliest legal location
duke@435 112 set_ctrl(n, early);
duke@435 113 }
duke@435 114
duke@435 115 //------------------------------set_subtree_ctrl-------------------------------
duke@435 116 // set missing _ctrl entries on new nodes
duke@435 117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
duke@435 118 // Already set? Get out.
duke@435 119 if( _nodes[n->_idx] ) return;
duke@435 120 // Recursively set _nodes array to indicate where the Node goes
duke@435 121 uint i;
duke@435 122 for( i = 0; i < n->req(); ++i ) {
duke@435 123 Node *m = n->in(i);
duke@435 124 if( m && m != C->root() )
duke@435 125 set_subtree_ctrl( m );
duke@435 126 }
duke@435 127
duke@435 128 // Fixup self
duke@435 129 set_early_ctrl( n );
duke@435 130 }
duke@435 131
duke@435 132 //------------------------------is_counted_loop--------------------------------
duke@435 133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
duke@435 134 PhaseGVN *gvn = &_igvn;
duke@435 135
duke@435 136 // Counted loop head must be a good RegionNode with only 3 not NULL
duke@435 137 // control input edges: Self, Entry, LoopBack.
duke@435 138 if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
duke@435 139 return NULL;
duke@435 140
duke@435 141 Node *init_control = x->in(LoopNode::EntryControl);
duke@435 142 Node *back_control = x->in(LoopNode::LoopBackControl);
duke@435 143 if( init_control == NULL || back_control == NULL ) // Partially dead
duke@435 144 return NULL;
duke@435 145 // Must also check for TOP when looking for a dead loop
duke@435 146 if( init_control->is_top() || back_control->is_top() )
duke@435 147 return NULL;
duke@435 148
duke@435 149 // Allow funny placement of Safepoint
duke@435 150 if( back_control->Opcode() == Op_SafePoint )
duke@435 151 back_control = back_control->in(TypeFunc::Control);
duke@435 152
duke@435 153 // Controlling test for loop
duke@435 154 Node *iftrue = back_control;
duke@435 155 uint iftrue_op = iftrue->Opcode();
duke@435 156 if( iftrue_op != Op_IfTrue &&
duke@435 157 iftrue_op != Op_IfFalse )
duke@435 158 // I have a weird back-control. Probably the loop-exit test is in
duke@435 159 // the middle of the loop and I am looking at some trailing control-flow
duke@435 160 // merge point. To fix this I would have to partially peel the loop.
duke@435 161 return NULL; // Obscure back-control
duke@435 162
duke@435 163 // Get boolean guarding loop-back test
duke@435 164 Node *iff = iftrue->in(0);
duke@435 165 if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
duke@435 166 BoolNode *test = iff->in(1)->as_Bool();
duke@435 167 BoolTest::mask bt = test->_test._test;
duke@435 168 float cl_prob = iff->as_If()->_prob;
duke@435 169 if( iftrue_op == Op_IfFalse ) {
duke@435 170 bt = BoolTest(bt).negate();
duke@435 171 cl_prob = 1.0 - cl_prob;
duke@435 172 }
duke@435 173 // Get backedge compare
duke@435 174 Node *cmp = test->in(1);
duke@435 175 int cmp_op = cmp->Opcode();
duke@435 176 if( cmp_op != Op_CmpI )
duke@435 177 return NULL; // Avoid pointer & float compares
duke@435 178
duke@435 179 // Find the trip-counter increment & limit. Limit must be loop invariant.
duke@435 180 Node *incr = cmp->in(1);
duke@435 181 Node *limit = cmp->in(2);
duke@435 182
duke@435 183 // ---------
duke@435 184 // need 'loop()' test to tell if limit is loop invariant
duke@435 185 // ---------
duke@435 186
duke@435 187 if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
duke@435 188 Node *tmp = incr; // Then reverse order into the CmpI
duke@435 189 incr = limit;
duke@435 190 limit = tmp;
duke@435 191 bt = BoolTest(bt).commute(); // And commute the exit test
duke@435 192 }
duke@435 193 if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
duke@435 194 return NULL;
duke@435 195
duke@435 196 // Trip-counter increment must be commutative & associative.
duke@435 197 uint incr_op = incr->Opcode();
duke@435 198 if( incr_op == Op_Phi && incr->req() == 3 ) {
duke@435 199 incr = incr->in(2); // Assume incr is on backedge of Phi
duke@435 200 incr_op = incr->Opcode();
duke@435 201 }
duke@435 202 Node* trunc1 = NULL;
duke@435 203 Node* trunc2 = NULL;
duke@435 204 const TypeInt* iv_trunc_t = NULL;
duke@435 205 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
duke@435 206 return NULL; // Funny increment opcode
duke@435 207 }
duke@435 208
duke@435 209 // Get merge point
duke@435 210 Node *xphi = incr->in(1);
duke@435 211 Node *stride = incr->in(2);
duke@435 212 if( !stride->is_Con() ) { // Oops, swap these
duke@435 213 if( !xphi->is_Con() ) // Is the other guy a constant?
duke@435 214 return NULL; // Nope, unknown stride, bail out
duke@435 215 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
duke@435 216 xphi = stride;
duke@435 217 stride = tmp;
duke@435 218 }
duke@435 219 //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
duke@435 220 if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
duke@435 221 PhiNode *phi = xphi->as_Phi();
duke@435 222
duke@435 223 // Stride must be constant
duke@435 224 const Type *stride_t = stride->bottom_type();
duke@435 225 int stride_con = stride_t->is_int()->get_con();
duke@435 226 assert( stride_con, "missed some peephole opt" );
duke@435 227
duke@435 228 // Phi must be of loop header; backedge must wrap to increment
duke@435 229 if( phi->region() != x ) return NULL;
duke@435 230 if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
duke@435 231 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
duke@435 232 return NULL;
duke@435 233 }
duke@435 234 Node *init_trip = phi->in(LoopNode::EntryControl);
duke@435 235 //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
duke@435 236
duke@435 237 // If iv trunc type is smaller than int, check for possible wrap.
duke@435 238 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
duke@435 239 assert(trunc1 != NULL, "must have found some truncation");
duke@435 240
duke@435 241 // Get a better type for the phi (filtered thru if's)
duke@435 242 const TypeInt* phi_ft = filtered_type(phi);
duke@435 243
duke@435 244 // Can iv take on a value that will wrap?
duke@435 245 //
duke@435 246 // Ensure iv's limit is not within "stride" of the wrap value.
duke@435 247 //
duke@435 248 // Example for "short" type
duke@435 249 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
duke@435 250 // If the stride is +10, then the last value of the induction
duke@435 251 // variable before the increment (phi_ft->_hi) must be
duke@435 252 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
duke@435 253 // ensure no truncation occurs after the increment.
duke@435 254
duke@435 255 if (stride_con > 0) {
duke@435 256 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
duke@435 257 iv_trunc_t->_lo > phi_ft->_lo) {
duke@435 258 return NULL; // truncation may occur
duke@435 259 }
duke@435 260 } else if (stride_con < 0) {
duke@435 261 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
duke@435 262 iv_trunc_t->_hi < phi_ft->_hi) {
duke@435 263 return NULL; // truncation may occur
duke@435 264 }
duke@435 265 }
duke@435 266 // No possibility of wrap so truncation can be discarded
duke@435 267 // Promote iv type to Int
duke@435 268 } else {
duke@435 269 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
duke@435 270 }
duke@435 271
duke@435 272 // =================================================
duke@435 273 // ---- SUCCESS! Found A Trip-Counted Loop! -----
duke@435 274 //
duke@435 275 // Canonicalize the condition on the test. If we can exactly determine
duke@435 276 // the trip-counter exit value, then set limit to that value and use
duke@435 277 // a '!=' test. Otherwise use conditon '<' for count-up loops and
duke@435 278 // '>' for count-down loops. If the condition is inverted and we will
duke@435 279 // be rolling through MININT to MAXINT, then bail out.
duke@435 280
duke@435 281 C->print_method("Before CountedLoop", 3);
duke@435 282
duke@435 283 // Check for SafePoint on backedge and remove
duke@435 284 Node *sfpt = x->in(LoopNode::LoopBackControl);
duke@435 285 if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
duke@435 286 lazy_replace( sfpt, iftrue );
duke@435 287 loop->_tail = iftrue;
duke@435 288 }
duke@435 289
duke@435 290
duke@435 291 // If compare points to incr, we are ok. Otherwise the compare
duke@435 292 // can directly point to the phi; in this case adjust the compare so that
duke@435 293 // it points to the incr by adusting the limit.
duke@435 294 if( cmp->in(1) == phi || cmp->in(2) == phi )
duke@435 295 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
duke@435 296
duke@435 297 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
duke@435 298 // Final value for iterator should be: trip_count * stride + init_trip.
duke@435 299 const Type *limit_t = limit->bottom_type();
duke@435 300 const Type *init_t = init_trip->bottom_type();
duke@435 301 Node *one_p = gvn->intcon( 1);
duke@435 302 Node *one_m = gvn->intcon(-1);
duke@435 303
duke@435 304 Node *trip_count = NULL;
duke@435 305 Node *hook = new (C, 6) Node(6);
duke@435 306 switch( bt ) {
duke@435 307 case BoolTest::eq:
duke@435 308 return NULL; // Bail out, but this loop trips at most twice!
duke@435 309 case BoolTest::ne: // Ahh, the case we desire
duke@435 310 if( stride_con == 1 )
duke@435 311 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 312 else if( stride_con == -1 )
duke@435 313 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
duke@435 314 else
duke@435 315 return NULL; // Odd stride; must prove we hit limit exactly
duke@435 316 set_subtree_ctrl( trip_count );
duke@435 317 //_loop.map(trip_count->_idx,loop(limit));
duke@435 318 break;
duke@435 319 case BoolTest::le: // Maybe convert to '<' case
duke@435 320 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
duke@435 321 set_subtree_ctrl( limit );
duke@435 322 hook->init_req(4, limit);
duke@435 323
duke@435 324 bt = BoolTest::lt;
duke@435 325 // Make the new limit be in the same loop nest as the old limit
duke@435 326 //_loop.map(limit->_idx,limit_loop);
duke@435 327 // Fall into next case
duke@435 328 case BoolTest::lt: { // Maybe convert to '!=' case
duke@435 329 if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
duke@435 330 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 331 set_subtree_ctrl( range );
duke@435 332 hook->init_req(0, range);
duke@435 333
duke@435 334 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 335 set_subtree_ctrl( bias );
duke@435 336 hook->init_req(1, bias);
duke@435 337
duke@435 338 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
duke@435 339 set_subtree_ctrl( bias1 );
duke@435 340 hook->init_req(2, bias1);
duke@435 341
duke@435 342 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 343 set_subtree_ctrl( trip_count );
duke@435 344 hook->init_req(3, trip_count);
duke@435 345 break;
duke@435 346 }
duke@435 347
duke@435 348 case BoolTest::ge: // Maybe convert to '>' case
duke@435 349 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
duke@435 350 set_subtree_ctrl( limit );
duke@435 351 hook->init_req(4 ,limit);
duke@435 352
duke@435 353 bt = BoolTest::gt;
duke@435 354 // Make the new limit be in the same loop nest as the old limit
duke@435 355 //_loop.map(limit->_idx,limit_loop);
duke@435 356 // Fall into next case
duke@435 357 case BoolTest::gt: { // Maybe convert to '!=' case
duke@435 358 if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
duke@435 359 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 360 set_subtree_ctrl( range );
duke@435 361 hook->init_req(0, range);
duke@435 362
duke@435 363 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 364 set_subtree_ctrl( bias );
duke@435 365 hook->init_req(1, bias);
duke@435 366
duke@435 367 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
duke@435 368 set_subtree_ctrl( bias1 );
duke@435 369 hook->init_req(2, bias1);
duke@435 370
duke@435 371 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 372 set_subtree_ctrl( trip_count );
duke@435 373 hook->init_req(3, trip_count);
duke@435 374 break;
duke@435 375 }
duke@435 376 }
duke@435 377
duke@435 378 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
duke@435 379 set_subtree_ctrl( span );
duke@435 380 hook->init_req(5, span);
duke@435 381
duke@435 382 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
duke@435 383 set_subtree_ctrl( limit );
duke@435 384
duke@435 385 // Build a canonical trip test.
duke@435 386 // Clone code, as old values may be in use.
duke@435 387 incr = incr->clone();
duke@435 388 incr->set_req(1,phi);
duke@435 389 incr->set_req(2,stride);
duke@435 390 incr = _igvn.register_new_node_with_optimizer(incr);
duke@435 391 set_early_ctrl( incr );
duke@435 392 _igvn.hash_delete(phi);
duke@435 393 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
duke@435 394
duke@435 395 // If phi type is more restrictive than Int, raise to
duke@435 396 // Int to prevent (almost) infinite recursion in igvn
duke@435 397 // which can only handle integer types for constants or minint..maxint.
duke@435 398 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
duke@435 399 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
duke@435 400 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
duke@435 401 nphi = _igvn.register_new_node_with_optimizer(nphi);
duke@435 402 set_ctrl(nphi, get_ctrl(phi));
duke@435 403 _igvn.subsume_node(phi, nphi);
duke@435 404 phi = nphi->as_Phi();
duke@435 405 }
duke@435 406 cmp = cmp->clone();
duke@435 407 cmp->set_req(1,incr);
duke@435 408 cmp->set_req(2,limit);
duke@435 409 cmp = _igvn.register_new_node_with_optimizer(cmp);
duke@435 410 set_ctrl(cmp, iff->in(0));
duke@435 411
duke@435 412 Node *tmp = test->clone();
duke@435 413 assert( tmp->is_Bool(), "" );
duke@435 414 test = (BoolNode*)tmp;
duke@435 415 (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
duke@435 416 test->set_req(1,cmp);
duke@435 417 _igvn.register_new_node_with_optimizer(test);
duke@435 418 set_ctrl(test, iff->in(0));
duke@435 419 // If the exit test is dead, STOP!
duke@435 420 if( test == NULL ) return NULL;
duke@435 421 _igvn.hash_delete(iff);
duke@435 422 iff->set_req_X( 1, test, &_igvn );
duke@435 423
duke@435 424 // Replace the old IfNode with a new LoopEndNode
duke@435 425 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
duke@435 426 IfNode *le = lex->as_If();
duke@435 427 uint dd = dom_depth(iff);
duke@435 428 set_idom(le, le->in(0), dd); // Update dominance for loop exit
duke@435 429 set_loop(le, loop);
duke@435 430
duke@435 431 // Get the loop-exit control
duke@435 432 Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
duke@435 433
duke@435 434 // Need to swap loop-exit and loop-back control?
duke@435 435 if( iftrue_op == Op_IfFalse ) {
duke@435 436 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
duke@435 437 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
duke@435 438
duke@435 439 loop->_tail = back_control = ift2;
duke@435 440 set_loop(ift2, loop);
duke@435 441 set_loop(iff2, get_loop(if_f));
duke@435 442
duke@435 443 // Lazy update of 'get_ctrl' mechanism.
duke@435 444 lazy_replace_proj( if_f , iff2 );
duke@435 445 lazy_replace_proj( iftrue, ift2 );
duke@435 446
duke@435 447 // Swap names
duke@435 448 if_f = iff2;
duke@435 449 iftrue = ift2;
duke@435 450 } else {
duke@435 451 _igvn.hash_delete(if_f );
duke@435 452 _igvn.hash_delete(iftrue);
duke@435 453 if_f ->set_req_X( 0, le, &_igvn );
duke@435 454 iftrue->set_req_X( 0, le, &_igvn );
duke@435 455 }
duke@435 456
duke@435 457 set_idom(iftrue, le, dd+1);
duke@435 458 set_idom(if_f, le, dd+1);
duke@435 459
duke@435 460 // Now setup a new CountedLoopNode to replace the existing LoopNode
duke@435 461 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
duke@435 462 // The following assert is approximately true, and defines the intention
duke@435 463 // of can_be_counted_loop. It fails, however, because phase->type
duke@435 464 // is not yet initialized for this loop and its parts.
duke@435 465 //assert(l->can_be_counted_loop(this), "sanity");
duke@435 466 _igvn.register_new_node_with_optimizer(l);
duke@435 467 set_loop(l, loop);
duke@435 468 loop->_head = l;
duke@435 469 // Fix all data nodes placed at the old loop head.
duke@435 470 // Uses the lazy-update mechanism of 'get_ctrl'.
duke@435 471 lazy_replace( x, l );
duke@435 472 set_idom(l, init_control, dom_depth(x));
duke@435 473
duke@435 474 // Check for immediately preceeding SafePoint and remove
duke@435 475 Node *sfpt2 = le->in(0);
duke@435 476 if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
duke@435 477 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
duke@435 478
duke@435 479 // Free up intermediate goo
duke@435 480 _igvn.remove_dead_node(hook);
duke@435 481
duke@435 482 C->print_method("After CountedLoop", 3);
duke@435 483
duke@435 484 // Return trip counter
duke@435 485 return trip_count;
duke@435 486 }
duke@435 487
duke@435 488
duke@435 489 //------------------------------Ideal------------------------------------------
duke@435 490 // Return a node which is more "ideal" than the current node.
duke@435 491 // Attempt to convert into a counted-loop.
duke@435 492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 493 if (!can_be_counted_loop(phase)) {
duke@435 494 phase->C->set_major_progress();
duke@435 495 }
duke@435 496 return RegionNode::Ideal(phase, can_reshape);
duke@435 497 }
duke@435 498
duke@435 499
duke@435 500 //=============================================================================
duke@435 501 //------------------------------Ideal------------------------------------------
duke@435 502 // Return a node which is more "ideal" than the current node.
duke@435 503 // Attempt to convert into a counted-loop.
duke@435 504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 505 return RegionNode::Ideal(phase, can_reshape);
duke@435 506 }
duke@435 507
duke@435 508 //------------------------------dump_spec--------------------------------------
duke@435 509 // Dump special per-node info
duke@435 510 #ifndef PRODUCT
duke@435 511 void CountedLoopNode::dump_spec(outputStream *st) const {
duke@435 512 LoopNode::dump_spec(st);
duke@435 513 if( stride_is_con() ) {
duke@435 514 st->print("stride: %d ",stride_con());
duke@435 515 } else {
duke@435 516 st->print("stride: not constant ");
duke@435 517 }
duke@435 518 if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
duke@435 519 if( is_main_loop() ) st->print("main of N%d", _idx );
duke@435 520 if( is_post_loop() ) st->print("post of N%d", _main_idx );
duke@435 521 }
duke@435 522 #endif
duke@435 523
duke@435 524 //=============================================================================
duke@435 525 int CountedLoopEndNode::stride_con() const {
duke@435 526 return stride()->bottom_type()->is_int()->get_con();
duke@435 527 }
duke@435 528
duke@435 529
duke@435 530 //----------------------match_incr_with_optional_truncation--------------------
duke@435 531 // Match increment with optional truncation:
duke@435 532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
duke@435 533 // Return NULL for failure. Success returns the increment node.
duke@435 534 Node* CountedLoopNode::match_incr_with_optional_truncation(
duke@435 535 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
duke@435 536 // Quick cutouts:
duke@435 537 if (expr == NULL || expr->req() != 3) return false;
duke@435 538
duke@435 539 Node *t1 = NULL;
duke@435 540 Node *t2 = NULL;
duke@435 541 const TypeInt* trunc_t = TypeInt::INT;
duke@435 542 Node* n1 = expr;
duke@435 543 int n1op = n1->Opcode();
duke@435 544
duke@435 545 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
duke@435 546 if (n1op == Op_AndI &&
duke@435 547 n1->in(2)->is_Con() &&
duke@435 548 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
duke@435 549 // %%% This check should match any mask of 2**K-1.
duke@435 550 t1 = n1;
duke@435 551 n1 = t1->in(1);
duke@435 552 n1op = n1->Opcode();
duke@435 553 trunc_t = TypeInt::CHAR;
duke@435 554 } else if (n1op == Op_RShiftI &&
duke@435 555 n1->in(1) != NULL &&
duke@435 556 n1->in(1)->Opcode() == Op_LShiftI &&
duke@435 557 n1->in(2) == n1->in(1)->in(2) &&
duke@435 558 n1->in(2)->is_Con()) {
duke@435 559 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
duke@435 560 // %%% This check should match any shift in [1..31].
duke@435 561 if (shift == 16 || shift == 8) {
duke@435 562 t1 = n1;
duke@435 563 t2 = t1->in(1);
duke@435 564 n1 = t2->in(1);
duke@435 565 n1op = n1->Opcode();
duke@435 566 if (shift == 16) {
duke@435 567 trunc_t = TypeInt::SHORT;
duke@435 568 } else if (shift == 8) {
duke@435 569 trunc_t = TypeInt::BYTE;
duke@435 570 }
duke@435 571 }
duke@435 572 }
duke@435 573
duke@435 574 // If (maybe after stripping) it is an AddI, we won:
duke@435 575 if (n1op == Op_AddI) {
duke@435 576 *trunc1 = t1;
duke@435 577 *trunc2 = t2;
duke@435 578 *trunc_type = trunc_t;
duke@435 579 return n1;
duke@435 580 }
duke@435 581
duke@435 582 // failed
duke@435 583 return NULL;
duke@435 584 }
duke@435 585
duke@435 586
duke@435 587 //------------------------------filtered_type--------------------------------
duke@435 588 // Return a type based on condition control flow
duke@435 589 // A successful return will be a type that is restricted due
duke@435 590 // to a series of dominating if-tests, such as:
duke@435 591 // if (i < 10) {
duke@435 592 // if (i > 0) {
duke@435 593 // here: "i" type is [1..10)
duke@435 594 // }
duke@435 595 // }
duke@435 596 // or a control flow merge
duke@435 597 // if (i < 10) {
duke@435 598 // do {
duke@435 599 // phi( , ) -- at top of loop type is [min_int..10)
duke@435 600 // i = ?
duke@435 601 // } while ( i < 10)
duke@435 602 //
duke@435 603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
duke@435 604 assert(n && n->bottom_type()->is_int(), "must be int");
duke@435 605 const TypeInt* filtered_t = NULL;
duke@435 606 if (!n->is_Phi()) {
duke@435 607 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
duke@435 608 filtered_t = filtered_type_from_dominators(n, n_ctrl);
duke@435 609
duke@435 610 } else {
duke@435 611 Node* phi = n->as_Phi();
duke@435 612 Node* region = phi->in(0);
duke@435 613 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
duke@435 614 if (region && region != C->top()) {
duke@435 615 for (uint i = 1; i < phi->req(); i++) {
duke@435 616 Node* val = phi->in(i);
duke@435 617 Node* use_c = region->in(i);
duke@435 618 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
duke@435 619 if (val_t != NULL) {
duke@435 620 if (filtered_t == NULL) {
duke@435 621 filtered_t = val_t;
duke@435 622 } else {
duke@435 623 filtered_t = filtered_t->meet(val_t)->is_int();
duke@435 624 }
duke@435 625 }
duke@435 626 }
duke@435 627 }
duke@435 628 }
duke@435 629 const TypeInt* n_t = _igvn.type(n)->is_int();
duke@435 630 if (filtered_t != NULL) {
duke@435 631 n_t = n_t->join(filtered_t)->is_int();
duke@435 632 }
duke@435 633 return n_t;
duke@435 634 }
duke@435 635
duke@435 636
duke@435 637 //------------------------------filtered_type_from_dominators--------------------------------
duke@435 638 // Return a possibly more restrictive type for val based on condition control flow of dominators
duke@435 639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
duke@435 640 if (val->is_Con()) {
duke@435 641 return val->bottom_type()->is_int();
duke@435 642 }
duke@435 643 uint if_limit = 10; // Max number of dominating if's visited
duke@435 644 const TypeInt* rtn_t = NULL;
duke@435 645
duke@435 646 if (use_ctrl && use_ctrl != C->top()) {
duke@435 647 Node* val_ctrl = get_ctrl(val);
duke@435 648 uint val_dom_depth = dom_depth(val_ctrl);
duke@435 649 Node* pred = use_ctrl;
duke@435 650 uint if_cnt = 0;
duke@435 651 while (if_cnt < if_limit) {
duke@435 652 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
duke@435 653 if_cnt++;
never@452 654 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
duke@435 655 if (if_t != NULL) {
duke@435 656 if (rtn_t == NULL) {
duke@435 657 rtn_t = if_t;
duke@435 658 } else {
duke@435 659 rtn_t = rtn_t->join(if_t)->is_int();
duke@435 660 }
duke@435 661 }
duke@435 662 }
duke@435 663 pred = idom(pred);
duke@435 664 if (pred == NULL || pred == C->top()) {
duke@435 665 break;
duke@435 666 }
duke@435 667 // Stop if going beyond definition block of val
duke@435 668 if (dom_depth(pred) < val_dom_depth) {
duke@435 669 break;
duke@435 670 }
duke@435 671 }
duke@435 672 }
duke@435 673 return rtn_t;
duke@435 674 }
duke@435 675
duke@435 676
duke@435 677 //------------------------------dump_spec--------------------------------------
duke@435 678 // Dump special per-node info
duke@435 679 #ifndef PRODUCT
duke@435 680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
duke@435 681 if( in(TestValue)->is_Bool() ) {
duke@435 682 BoolTest bt( test_trip()); // Added this for g++.
duke@435 683
duke@435 684 st->print("[");
duke@435 685 bt.dump_on(st);
duke@435 686 st->print("]");
duke@435 687 }
duke@435 688 st->print(" ");
duke@435 689 IfNode::dump_spec(st);
duke@435 690 }
duke@435 691 #endif
duke@435 692
duke@435 693 //=============================================================================
duke@435 694 //------------------------------is_member--------------------------------------
duke@435 695 // Is 'l' a member of 'this'?
duke@435 696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
duke@435 697 while( l->_nest > _nest ) l = l->_parent;
duke@435 698 return l == this;
duke@435 699 }
duke@435 700
duke@435 701 //------------------------------set_nest---------------------------------------
duke@435 702 // Set loop tree nesting depth. Accumulate _has_call bits.
duke@435 703 int IdealLoopTree::set_nest( uint depth ) {
duke@435 704 _nest = depth;
duke@435 705 int bits = _has_call;
duke@435 706 if( _child ) bits |= _child->set_nest(depth+1);
duke@435 707 if( bits ) _has_call = 1;
duke@435 708 if( _next ) bits |= _next ->set_nest(depth );
duke@435 709 return bits;
duke@435 710 }
duke@435 711
duke@435 712 //------------------------------split_fall_in----------------------------------
duke@435 713 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 714 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
duke@435 716 PhaseIterGVN &igvn = phase->_igvn;
duke@435 717 uint i;
duke@435 718
duke@435 719 // Make a new RegionNode to be the landing pad.
duke@435 720 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
duke@435 721 phase->set_loop(landing_pad,_parent);
duke@435 722 // Gather all the fall-in control paths into the landing pad
duke@435 723 uint icnt = fall_in_cnt;
duke@435 724 uint oreq = _head->req();
duke@435 725 for( i = oreq-1; i>0; i-- )
duke@435 726 if( !phase->is_member( this, _head->in(i) ) )
duke@435 727 landing_pad->set_req(icnt--,_head->in(i));
duke@435 728
duke@435 729 // Peel off PhiNode edges as well
duke@435 730 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 731 Node *oj = _head->fast_out(j);
duke@435 732 if( oj->is_Phi() ) {
duke@435 733 PhiNode* old_phi = oj->as_Phi();
duke@435 734 assert( old_phi->region() == _head, "" );
duke@435 735 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
duke@435 736 Node *p = PhiNode::make_blank(landing_pad, old_phi);
duke@435 737 uint icnt = fall_in_cnt;
duke@435 738 for( i = oreq-1; i>0; i-- ) {
duke@435 739 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 740 p->init_req(icnt--, old_phi->in(i));
duke@435 741 // Go ahead and clean out old edges from old phi
duke@435 742 old_phi->del_req(i);
duke@435 743 }
duke@435 744 }
duke@435 745 // Search for CSE's here, because ZKM.jar does a lot of
duke@435 746 // loop hackery and we need to be a little incremental
duke@435 747 // with the CSE to avoid O(N^2) node blow-up.
duke@435 748 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
duke@435 749 if( p2 ) { // Found CSE
duke@435 750 p->destruct(); // Recover useless new node
duke@435 751 p = p2; // Use old node
duke@435 752 } else {
duke@435 753 igvn.register_new_node_with_optimizer(p, old_phi);
duke@435 754 }
duke@435 755 // Make old Phi refer to new Phi.
duke@435 756 old_phi->add_req(p);
duke@435 757 // Check for the special case of making the old phi useless and
duke@435 758 // disappear it. In JavaGrande I have a case where this useless
duke@435 759 // Phi is the loop limit and prevents recognizing a CountedLoop
duke@435 760 // which in turn prevents removing an empty loop.
duke@435 761 Node *id_old_phi = old_phi->Identity( &igvn );
duke@435 762 if( id_old_phi != old_phi ) { // Found a simple identity?
duke@435 763 // Note that I cannot call 'subsume_node' here, because
duke@435 764 // that will yank the edge from old_phi to the Region and
duke@435 765 // I'm mid-iteration over the Region's uses.
duke@435 766 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
duke@435 767 Node* use = old_phi->last_out(i);
duke@435 768 igvn.hash_delete(use);
duke@435 769 igvn._worklist.push(use);
duke@435 770 uint uses_found = 0;
duke@435 771 for (uint j = 0; j < use->len(); j++) {
duke@435 772 if (use->in(j) == old_phi) {
duke@435 773 if (j < use->req()) use->set_req (j, id_old_phi);
duke@435 774 else use->set_prec(j, id_old_phi);
duke@435 775 uses_found++;
duke@435 776 }
duke@435 777 }
duke@435 778 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 779 }
duke@435 780 }
duke@435 781 igvn._worklist.push(old_phi);
duke@435 782 }
duke@435 783 }
duke@435 784 // Finally clean out the fall-in edges from the RegionNode
duke@435 785 for( i = oreq-1; i>0; i-- ) {
duke@435 786 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 787 _head->del_req(i);
duke@435 788 }
duke@435 789 }
duke@435 790 // Transform landing pad
duke@435 791 igvn.register_new_node_with_optimizer(landing_pad, _head);
duke@435 792 // Insert landing pad into the header
duke@435 793 _head->add_req(landing_pad);
duke@435 794 }
duke@435 795
duke@435 796 //------------------------------split_outer_loop-------------------------------
duke@435 797 // Split out the outermost loop from this shared header.
duke@435 798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
duke@435 799 PhaseIterGVN &igvn = phase->_igvn;
duke@435 800
duke@435 801 // Find index of outermost loop; it should also be my tail.
duke@435 802 uint outer_idx = 1;
duke@435 803 while( _head->in(outer_idx) != _tail ) outer_idx++;
duke@435 804
duke@435 805 // Make a LoopNode for the outermost loop.
duke@435 806 Node *ctl = _head->in(LoopNode::EntryControl);
duke@435 807 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
duke@435 808 outer = igvn.register_new_node_with_optimizer(outer, _head);
duke@435 809 phase->set_created_loop_node();
duke@435 810 // Outermost loop falls into '_head' loop
duke@435 811 _head->set_req(LoopNode::EntryControl, outer);
duke@435 812 _head->del_req(outer_idx);
duke@435 813 // Split all the Phis up between '_head' loop and 'outer' loop.
duke@435 814 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 815 Node *out = _head->fast_out(j);
duke@435 816 if( out->is_Phi() ) {
duke@435 817 PhiNode *old_phi = out->as_Phi();
duke@435 818 assert( old_phi->region() == _head, "" );
duke@435 819 Node *phi = PhiNode::make_blank(outer, old_phi);
duke@435 820 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
duke@435 821 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
duke@435 822 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
duke@435 823 // Make old Phi point to new Phi on the fall-in path
duke@435 824 igvn.hash_delete(old_phi);
duke@435 825 old_phi->set_req(LoopNode::EntryControl, phi);
duke@435 826 old_phi->del_req(outer_idx);
duke@435 827 igvn._worklist.push(old_phi);
duke@435 828 }
duke@435 829 }
duke@435 830
duke@435 831 // Use the new loop head instead of the old shared one
duke@435 832 _head = outer;
duke@435 833 phase->set_loop(_head, this);
duke@435 834 }
duke@435 835
duke@435 836 //------------------------------fix_parent-------------------------------------
duke@435 837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
duke@435 838 loop->_parent = parent;
duke@435 839 if( loop->_child ) fix_parent( loop->_child, loop );
duke@435 840 if( loop->_next ) fix_parent( loop->_next , parent );
duke@435 841 }
duke@435 842
duke@435 843 //------------------------------estimate_path_freq-----------------------------
duke@435 844 static float estimate_path_freq( Node *n ) {
duke@435 845 // Try to extract some path frequency info
duke@435 846 IfNode *iff;
duke@435 847 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
duke@435 848 uint nop = n->Opcode();
duke@435 849 if( nop == Op_SafePoint ) { // Skip any safepoint
duke@435 850 n = n->in(0);
duke@435 851 continue;
duke@435 852 }
duke@435 853 if( nop == Op_CatchProj ) { // Get count from a prior call
duke@435 854 // Assume call does not always throw exceptions: means the call-site
duke@435 855 // count is also the frequency of the fall-through path.
duke@435 856 assert( n->is_CatchProj(), "" );
duke@435 857 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
duke@435 858 return 0.0f; // Assume call exception path is rare
duke@435 859 Node *call = n->in(0)->in(0)->in(0);
duke@435 860 assert( call->is_Call(), "expect a call here" );
duke@435 861 const JVMState *jvms = ((CallNode*)call)->jvms();
duke@435 862 ciMethodData* methodData = jvms->method()->method_data();
duke@435 863 if (!methodData->is_mature()) return 0.0f; // No call-site data
duke@435 864 ciProfileData* data = methodData->bci_to_data(jvms->bci());
duke@435 865 if ((data == NULL) || !data->is_CounterData()) {
duke@435 866 // no call profile available, try call's control input
duke@435 867 n = n->in(0);
duke@435 868 continue;
duke@435 869 }
duke@435 870 return data->as_CounterData()->count()/FreqCountInvocations;
duke@435 871 }
duke@435 872 // See if there's a gating IF test
duke@435 873 Node *n_c = n->in(0);
duke@435 874 if( !n_c->is_If() ) break; // No estimate available
duke@435 875 iff = n_c->as_If();
duke@435 876 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
duke@435 877 // Compute how much count comes on this path
duke@435 878 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
duke@435 879 // Have no count info. Skip dull uncommon-trap like branches.
duke@435 880 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
duke@435 881 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
duke@435 882 break;
duke@435 883 // Skip through never-taken branch; look for a real loop exit.
duke@435 884 n = iff->in(0);
duke@435 885 }
duke@435 886 return 0.0f; // No estimate available
duke@435 887 }
duke@435 888
duke@435 889 //------------------------------merge_many_backedges---------------------------
duke@435 890 // Merge all the backedges from the shared header into a private Region.
duke@435 891 // Feed that region as the one backedge to this loop.
duke@435 892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
duke@435 893 uint i;
duke@435 894
duke@435 895 // Scan for the top 2 hottest backedges
duke@435 896 float hotcnt = 0.0f;
duke@435 897 float warmcnt = 0.0f;
duke@435 898 uint hot_idx = 0;
duke@435 899 // Loop starts at 2 because slot 1 is the fall-in path
duke@435 900 for( i = 2; i < _head->req(); i++ ) {
duke@435 901 float cnt = estimate_path_freq(_head->in(i));
duke@435 902 if( cnt > hotcnt ) { // Grab hottest path
duke@435 903 warmcnt = hotcnt;
duke@435 904 hotcnt = cnt;
duke@435 905 hot_idx = i;
duke@435 906 } else if( cnt > warmcnt ) { // And 2nd hottest path
duke@435 907 warmcnt = cnt;
duke@435 908 }
duke@435 909 }
duke@435 910
duke@435 911 // See if the hottest backedge is worthy of being an inner loop
duke@435 912 // by being much hotter than the next hottest backedge.
duke@435 913 if( hotcnt <= 0.0001 ||
duke@435 914 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
duke@435 915
duke@435 916 // Peel out the backedges into a private merge point; peel
duke@435 917 // them all except optionally hot_idx.
duke@435 918 PhaseIterGVN &igvn = phase->_igvn;
duke@435 919
duke@435 920 Node *hot_tail = NULL;
duke@435 921 // Make a Region for the merge point
duke@435 922 Node *r = new (phase->C, 1) RegionNode(1);
duke@435 923 for( i = 2; i < _head->req(); i++ ) {
duke@435 924 if( i != hot_idx )
duke@435 925 r->add_req( _head->in(i) );
duke@435 926 else hot_tail = _head->in(i);
duke@435 927 }
duke@435 928 igvn.register_new_node_with_optimizer(r, _head);
duke@435 929 // Plug region into end of loop _head, followed by hot_tail
duke@435 930 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
duke@435 931 _head->set_req(2, r);
duke@435 932 if( hot_idx ) _head->add_req(hot_tail);
duke@435 933
duke@435 934 // Split all the Phis up between '_head' loop and the Region 'r'
duke@435 935 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 936 Node *out = _head->fast_out(j);
duke@435 937 if( out->is_Phi() ) {
duke@435 938 PhiNode* n = out->as_Phi();
duke@435 939 igvn.hash_delete(n); // Delete from hash before hacking edges
duke@435 940 Node *hot_phi = NULL;
duke@435 941 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
duke@435 942 // Check all inputs for the ones to peel out
duke@435 943 uint j = 1;
duke@435 944 for( uint i = 2; i < n->req(); i++ ) {
duke@435 945 if( i != hot_idx )
duke@435 946 phi->set_req( j++, n->in(i) );
duke@435 947 else hot_phi = n->in(i);
duke@435 948 }
duke@435 949 // Register the phi but do not transform until whole place transforms
duke@435 950 igvn.register_new_node_with_optimizer(phi, n);
duke@435 951 // Add the merge phi to the old Phi
duke@435 952 while( n->req() > 3 ) n->del_req( n->req()-1 );
duke@435 953 n->set_req(2, phi);
duke@435 954 if( hot_idx ) n->add_req(hot_phi);
duke@435 955 }
duke@435 956 }
duke@435 957
duke@435 958
duke@435 959 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
duke@435 960 // of self loop tree. Turn self into a loop headed by _head and with
duke@435 961 // tail being the new merge point.
duke@435 962 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
duke@435 963 phase->set_loop(_tail,ilt); // Adjust tail
duke@435 964 _tail = r; // Self's tail is new merge point
duke@435 965 phase->set_loop(r,this);
duke@435 966 ilt->_child = _child; // New guy has my children
duke@435 967 _child = ilt; // Self has new guy as only child
duke@435 968 ilt->_parent = this; // new guy has self for parent
duke@435 969 ilt->_nest = _nest; // Same nesting depth (for now)
duke@435 970
duke@435 971 // Starting with 'ilt', look for child loop trees using the same shared
duke@435 972 // header. Flatten these out; they will no longer be loops in the end.
duke@435 973 IdealLoopTree **pilt = &_child;
duke@435 974 while( ilt ) {
duke@435 975 if( ilt->_head == _head ) {
duke@435 976 uint i;
duke@435 977 for( i = 2; i < _head->req(); i++ )
duke@435 978 if( _head->in(i) == ilt->_tail )
duke@435 979 break; // Still a loop
duke@435 980 if( i == _head->req() ) { // No longer a loop
duke@435 981 // Flatten ilt. Hang ilt's "_next" list from the end of
duke@435 982 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
duke@435 983 IdealLoopTree **cp = &ilt->_child;
duke@435 984 while( *cp ) cp = &(*cp)->_next; // Find end of child list
duke@435 985 *cp = ilt->_next; // Hang next list at end of child list
duke@435 986 *pilt = ilt->_child; // Move child up to replace ilt
duke@435 987 ilt->_head = NULL; // Flag as a loop UNIONED into parent
duke@435 988 ilt = ilt->_child; // Repeat using new ilt
duke@435 989 continue; // do not advance over ilt->_child
duke@435 990 }
duke@435 991 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
duke@435 992 phase->set_loop(_head,ilt);
duke@435 993 }
duke@435 994 pilt = &ilt->_child; // Advance to next
duke@435 995 ilt = *pilt;
duke@435 996 }
duke@435 997
duke@435 998 if( _child ) fix_parent( _child, this );
duke@435 999 }
duke@435 1000
duke@435 1001 //------------------------------beautify_loops---------------------------------
duke@435 1002 // Split shared headers and insert loop landing pads.
duke@435 1003 // Insert a LoopNode to replace the RegionNode.
duke@435 1004 // Return TRUE if loop tree is structurally changed.
duke@435 1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
duke@435 1006 bool result = false;
duke@435 1007 // Cache parts in locals for easy
duke@435 1008 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1009
duke@435 1010 phase->C->print_method("Before beautify loops", 3);
duke@435 1011
duke@435 1012 igvn.hash_delete(_head); // Yank from hash before hacking edges
duke@435 1013
duke@435 1014 // Check for multiple fall-in paths. Peel off a landing pad if need be.
duke@435 1015 int fall_in_cnt = 0;
duke@435 1016 for( uint i = 1; i < _head->req(); i++ )
duke@435 1017 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1018 fall_in_cnt++;
duke@435 1019 assert( fall_in_cnt, "at least 1 fall-in path" );
duke@435 1020 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
duke@435 1021 split_fall_in( phase, fall_in_cnt );
duke@435 1022
duke@435 1023 // Swap inputs to the _head and all Phis to move the fall-in edge to
duke@435 1024 // the left.
duke@435 1025 fall_in_cnt = 1;
duke@435 1026 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
duke@435 1027 fall_in_cnt++;
duke@435 1028 if( fall_in_cnt > 1 ) {
duke@435 1029 // Since I am just swapping inputs I do not need to update def-use info
duke@435 1030 Node *tmp = _head->in(1);
duke@435 1031 _head->set_req( 1, _head->in(fall_in_cnt) );
duke@435 1032 _head->set_req( fall_in_cnt, tmp );
duke@435 1033 // Swap also all Phis
duke@435 1034 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
duke@435 1035 Node* phi = _head->fast_out(i);
duke@435 1036 if( phi->is_Phi() ) {
duke@435 1037 igvn.hash_delete(phi); // Yank from hash before hacking edges
duke@435 1038 tmp = phi->in(1);
duke@435 1039 phi->set_req( 1, phi->in(fall_in_cnt) );
duke@435 1040 phi->set_req( fall_in_cnt, tmp );
duke@435 1041 }
duke@435 1042 }
duke@435 1043 }
duke@435 1044 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
duke@435 1045 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
duke@435 1046
duke@435 1047 // If I am a shared header (multiple backedges), peel off the many
duke@435 1048 // backedges into a private merge point and use the merge point as
duke@435 1049 // the one true backedge.
duke@435 1050 if( _head->req() > 3 ) {
duke@435 1051 // Merge the many backedges into a single backedge.
duke@435 1052 merge_many_backedges( phase );
duke@435 1053 result = true;
duke@435 1054 }
duke@435 1055
duke@435 1056 // If I am a shared header (multiple backedges), peel off myself loop.
duke@435 1057 // I better be the outermost loop.
duke@435 1058 if( _head->req() > 3 ) {
duke@435 1059 split_outer_loop( phase );
duke@435 1060 result = true;
duke@435 1061
duke@435 1062 } else if( !_head->is_Loop() && !_irreducible ) {
duke@435 1063 // Make a new LoopNode to replace the old loop head
duke@435 1064 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
duke@435 1065 l = igvn.register_new_node_with_optimizer(l, _head);
duke@435 1066 phase->set_created_loop_node();
duke@435 1067 // Go ahead and replace _head
duke@435 1068 phase->_igvn.subsume_node( _head, l );
duke@435 1069 _head = l;
duke@435 1070 phase->set_loop(_head, this);
duke@435 1071 for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
duke@435 1072 phase->_igvn.add_users_to_worklist(l->fast_out(i));
duke@435 1073 }
duke@435 1074
duke@435 1075 // Now recursively beautify nested loops
duke@435 1076 if( _child ) result |= _child->beautify_loops( phase );
duke@435 1077 if( _next ) result |= _next ->beautify_loops( phase );
duke@435 1078 return result;
duke@435 1079 }
duke@435 1080
duke@435 1081 //------------------------------allpaths_check_safepts----------------------------
duke@435 1082 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 1083 // encountered. Helper for check_safepts.
duke@435 1084 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1085 assert(stack.size() == 0, "empty stack");
duke@435 1086 stack.push(_tail);
duke@435 1087 visited.Clear();
duke@435 1088 visited.set(_tail->_idx);
duke@435 1089 while (stack.size() > 0) {
duke@435 1090 Node* n = stack.pop();
duke@435 1091 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1092 // Terminate this path
duke@435 1093 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1094 if (_phase->get_loop(n) != this) {
duke@435 1095 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1096 _required_safept->push(n); // save the one closest to the tail
duke@435 1097 }
duke@435 1098 // Terminate this path
duke@435 1099 } else {
duke@435 1100 uint start = n->is_Region() ? 1 : 0;
duke@435 1101 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
duke@435 1102 for (uint i = start; i < end; i++) {
duke@435 1103 Node* in = n->in(i);
duke@435 1104 assert(in->is_CFG(), "must be");
duke@435 1105 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
duke@435 1106 stack.push(in);
duke@435 1107 }
duke@435 1108 }
duke@435 1109 }
duke@435 1110 }
duke@435 1111 }
duke@435 1112
duke@435 1113 //------------------------------check_safepts----------------------------
duke@435 1114 // Given dominators, try to find loops with calls that must always be
duke@435 1115 // executed (call dominates loop tail). These loops do not need non-call
duke@435 1116 // safepoints (ncsfpt).
duke@435 1117 //
duke@435 1118 // A complication is that a safepoint in a inner loop may be needed
duke@435 1119 // by an outer loop. In the following, the inner loop sees it has a
duke@435 1120 // call (block 3) on every path from the head (block 2) to the
duke@435 1121 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
duke@435 1122 // in block 2, _but_ this leaves the outer loop without a safepoint.
duke@435 1123 //
duke@435 1124 // entry 0
duke@435 1125 // |
duke@435 1126 // v
duke@435 1127 // outer 1,2 +->1
duke@435 1128 // | |
duke@435 1129 // | v
duke@435 1130 // | 2<---+ ncsfpt in 2
duke@435 1131 // |_/|\ |
duke@435 1132 // | v |
duke@435 1133 // inner 2,3 / 3 | call in 3
duke@435 1134 // / | |
duke@435 1135 // v +--+
duke@435 1136 // exit 4
duke@435 1137 //
duke@435 1138 //
duke@435 1139 // This method creates a list (_required_safept) of ncsfpt nodes that must
duke@435 1140 // be protected is created for each loop. When a ncsfpt maybe deleted, it
duke@435 1141 // is first looked for in the lists for the outer loops of the current loop.
duke@435 1142 //
duke@435 1143 // The insights into the problem:
duke@435 1144 // A) counted loops are okay
duke@435 1145 // B) innermost loops are okay (only an inner loop can delete
duke@435 1146 // a ncsfpt needed by an outer loop)
duke@435 1147 // C) a loop is immune from an inner loop deleting a safepoint
duke@435 1148 // if the loop has a call on the idom-path
duke@435 1149 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
duke@435 1150 // idom-path that is not in a nested loop
duke@435 1151 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
duke@435 1152 // loop needs to be prevented from deletion by an inner loop
duke@435 1153 //
duke@435 1154 // There are two analyses:
duke@435 1155 // 1) The first, and cheaper one, scans the loop body from
duke@435 1156 // tail to head following the idom (immediate dominator)
duke@435 1157 // chain, looking for the cases (C,D,E) above.
duke@435 1158 // Since inner loops are scanned before outer loops, there is summary
duke@435 1159 // information about inner loops. Inner loops can be skipped over
duke@435 1160 // when the tail of an inner loop is encountered.
duke@435 1161 //
duke@435 1162 // 2) The second, invoked if the first fails to find a call or ncsfpt on
duke@435 1163 // the idom path (which is rare), scans all predecessor control paths
duke@435 1164 // from the tail to the head, terminating a path when a call or sfpt
duke@435 1165 // is encountered, to find the ncsfpt's that are closest to the tail.
duke@435 1166 //
duke@435 1167 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1168 // Bottom up traversal
duke@435 1169 IdealLoopTree* ch = _child;
duke@435 1170 while (ch != NULL) {
duke@435 1171 ch->check_safepts(visited, stack);
duke@435 1172 ch = ch->_next;
duke@435 1173 }
duke@435 1174
duke@435 1175 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
duke@435 1176 bool has_call = false; // call on dom-path
duke@435 1177 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
duke@435 1178 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
duke@435 1179 // Scan the dom-path nodes from tail to head
duke@435 1180 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
duke@435 1181 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1182 has_call = true;
duke@435 1183 _has_sfpt = 1; // Then no need for a safept!
duke@435 1184 break;
duke@435 1185 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1186 if (_phase->get_loop(n) == this) {
duke@435 1187 has_local_ncsfpt = true;
duke@435 1188 break;
duke@435 1189 }
duke@435 1190 if (nonlocal_ncsfpt == NULL) {
duke@435 1191 nonlocal_ncsfpt = n; // save the one closest to the tail
duke@435 1192 }
duke@435 1193 } else {
duke@435 1194 IdealLoopTree* nlpt = _phase->get_loop(n);
duke@435 1195 if (this != nlpt) {
duke@435 1196 // If at an inner loop tail, see if the inner loop has already
duke@435 1197 // recorded seeing a call on the dom-path (and stop.) If not,
duke@435 1198 // jump to the head of the inner loop.
duke@435 1199 assert(is_member(nlpt), "nested loop");
duke@435 1200 Node* tail = nlpt->_tail;
duke@435 1201 if (tail->in(0)->is_If()) tail = tail->in(0);
duke@435 1202 if (n == tail) {
duke@435 1203 // If inner loop has call on dom-path, so does outer loop
duke@435 1204 if (nlpt->_has_sfpt) {
duke@435 1205 has_call = true;
duke@435 1206 _has_sfpt = 1;
duke@435 1207 break;
duke@435 1208 }
duke@435 1209 // Skip to head of inner loop
duke@435 1210 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
duke@435 1211 n = nlpt->_head;
duke@435 1212 }
duke@435 1213 }
duke@435 1214 }
duke@435 1215 }
duke@435 1216 // Record safept's that this loop needs preserved when an
duke@435 1217 // inner loop attempts to delete it's safepoints.
duke@435 1218 if (_child != NULL && !has_call && !has_local_ncsfpt) {
duke@435 1219 if (nonlocal_ncsfpt != NULL) {
duke@435 1220 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1221 _required_safept->push(nonlocal_ncsfpt);
duke@435 1222 } else {
duke@435 1223 // Failed to find a suitable safept on the dom-path. Now use
duke@435 1224 // an all paths walk from tail to head, looking for safepoints to preserve.
duke@435 1225 allpaths_check_safepts(visited, stack);
duke@435 1226 }
duke@435 1227 }
duke@435 1228 }
duke@435 1229 }
duke@435 1230
duke@435 1231 //---------------------------is_deleteable_safept----------------------------
duke@435 1232 // Is safept not required by an outer loop?
duke@435 1233 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
duke@435 1234 assert(sfpt->Opcode() == Op_SafePoint, "");
duke@435 1235 IdealLoopTree* lp = get_loop(sfpt)->_parent;
duke@435 1236 while (lp != NULL) {
duke@435 1237 Node_List* sfpts = lp->_required_safept;
duke@435 1238 if (sfpts != NULL) {
duke@435 1239 for (uint i = 0; i < sfpts->size(); i++) {
duke@435 1240 if (sfpt == sfpts->at(i))
duke@435 1241 return false;
duke@435 1242 }
duke@435 1243 }
duke@435 1244 lp = lp->_parent;
duke@435 1245 }
duke@435 1246 return true;
duke@435 1247 }
duke@435 1248
duke@435 1249 //------------------------------counted_loop-----------------------------------
duke@435 1250 // Convert to counted loops where possible
duke@435 1251 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
duke@435 1252
duke@435 1253 // For grins, set the inner-loop flag here
duke@435 1254 if( !_child ) {
duke@435 1255 if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
duke@435 1256 }
duke@435 1257
duke@435 1258 if( _head->is_CountedLoop() ||
duke@435 1259 phase->is_counted_loop( _head, this ) ) {
duke@435 1260 _has_sfpt = 1; // Indicate we do not need a safepoint here
duke@435 1261
duke@435 1262 // Look for a safepoint to remove
duke@435 1263 for (Node* n = tail(); n != _head; n = phase->idom(n))
duke@435 1264 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1265 phase->is_deleteable_safept(n))
duke@435 1266 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1267
duke@435 1268 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1269 Node *incr = cl->incr();
duke@435 1270 if( !incr ) return; // Dead loop?
duke@435 1271 Node *init = cl->init_trip();
duke@435 1272 Node *phi = cl->phi();
duke@435 1273 // protect against stride not being a constant
duke@435 1274 if( !cl->stride_is_con() ) return;
duke@435 1275 int stride_con = cl->stride_con();
duke@435 1276
duke@435 1277 // Look for induction variables
duke@435 1278
duke@435 1279 // Visit all children, looking for Phis
duke@435 1280 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
duke@435 1281 Node *out = cl->out(i);
duke@435 1282 if (!out->is_Phi()) continue; // Looking for phis
duke@435 1283 PhiNode* phi2 = out->as_Phi();
duke@435 1284 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
duke@435 1285 // Look for induction variables of the form: X += constant
duke@435 1286 if( phi2->region() != _head ||
duke@435 1287 incr2->req() != 3 ||
duke@435 1288 incr2->in(1) != phi2 ||
duke@435 1289 incr2 == incr ||
duke@435 1290 incr2->Opcode() != Op_AddI ||
duke@435 1291 !incr2->in(2)->is_Con() )
duke@435 1292 continue;
duke@435 1293
duke@435 1294 // Check for parallel induction variable (parallel to trip counter)
duke@435 1295 // via an affine function. In particular, count-down loops with
duke@435 1296 // count-up array indices are common. We only RCE references off
duke@435 1297 // the trip-counter, so we need to convert all these to trip-counter
duke@435 1298 // expressions.
duke@435 1299 Node *init2 = phi2->in( LoopNode::EntryControl );
duke@435 1300 int stride_con2 = incr2->in(2)->get_int();
duke@435 1301
duke@435 1302 // The general case here gets a little tricky. We want to find the
duke@435 1303 // GCD of all possible parallel IV's and make a new IV using this
duke@435 1304 // GCD for the loop. Then all possible IVs are simple multiples of
duke@435 1305 // the GCD. In practice, this will cover very few extra loops.
duke@435 1306 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
duke@435 1307 // where +/-1 is the common case, but other integer multiples are
duke@435 1308 // also easy to handle.
duke@435 1309 int ratio_con = stride_con2/stride_con;
duke@435 1310
duke@435 1311 if( ratio_con * stride_con == stride_con2 ) { // Check for exact
duke@435 1312 // Convert to using the trip counter. The parallel induction
duke@435 1313 // variable differs from the trip counter by a loop-invariant
duke@435 1314 // amount, the difference between their respective initial values.
duke@435 1315 // It is scaled by the 'ratio_con'.
duke@435 1316 Compile* C = phase->C;
duke@435 1317 Node* ratio = phase->_igvn.intcon(ratio_con);
duke@435 1318 phase->set_ctrl(ratio, C->root());
duke@435 1319 Node* ratio_init = new (C, 3) MulINode(init, ratio);
duke@435 1320 phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
duke@435 1321 phase->set_early_ctrl(ratio_init);
duke@435 1322 Node* diff = new (C, 3) SubINode(init2, ratio_init);
duke@435 1323 phase->_igvn.register_new_node_with_optimizer(diff, init2);
duke@435 1324 phase->set_early_ctrl(diff);
duke@435 1325 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
duke@435 1326 phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
duke@435 1327 phase->set_ctrl(ratio_idx, cl);
duke@435 1328 Node* add = new (C, 3) AddINode(ratio_idx, diff);
duke@435 1329 phase->_igvn.register_new_node_with_optimizer(add);
duke@435 1330 phase->set_ctrl(add, cl);
duke@435 1331 phase->_igvn.hash_delete( phi2 );
duke@435 1332 phase->_igvn.subsume_node( phi2, add );
duke@435 1333 // Sometimes an induction variable is unused
duke@435 1334 if (add->outcnt() == 0) {
duke@435 1335 phase->_igvn.remove_dead_node(add);
duke@435 1336 }
duke@435 1337 --i; // deleted this phi; rescan starting with next position
duke@435 1338 continue;
duke@435 1339 }
duke@435 1340 }
duke@435 1341 } else if (_parent != NULL && !_irreducible) {
duke@435 1342 // Not a counted loop.
duke@435 1343 // Look for a safepoint on the idom-path to remove, preserving the first one
duke@435 1344 bool found = false;
duke@435 1345 Node* n = tail();
duke@435 1346 for (; n != _head && !found; n = phase->idom(n)) {
duke@435 1347 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
duke@435 1348 found = true; // Found one
duke@435 1349 }
duke@435 1350 // Skip past it and delete the others
duke@435 1351 for (; n != _head; n = phase->idom(n)) {
duke@435 1352 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1353 phase->is_deleteable_safept(n))
duke@435 1354 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1355 }
duke@435 1356 }
duke@435 1357
duke@435 1358 // Recursively
duke@435 1359 if( _child ) _child->counted_loop( phase );
duke@435 1360 if( _next ) _next ->counted_loop( phase );
duke@435 1361 }
duke@435 1362
duke@435 1363 #ifndef PRODUCT
duke@435 1364 //------------------------------dump_head--------------------------------------
duke@435 1365 // Dump 1 liner for loop header info
duke@435 1366 void IdealLoopTree::dump_head( ) const {
duke@435 1367 for( uint i=0; i<_nest; i++ )
duke@435 1368 tty->print(" ");
duke@435 1369 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
duke@435 1370 if( _irreducible ) tty->print(" IRREDUCIBLE");
duke@435 1371 if( _head->is_CountedLoop() ) {
duke@435 1372 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1373 tty->print(" counted");
duke@435 1374 if( cl->is_pre_loop () ) tty->print(" pre" );
duke@435 1375 if( cl->is_main_loop() ) tty->print(" main");
duke@435 1376 if( cl->is_post_loop() ) tty->print(" post");
duke@435 1377 }
duke@435 1378 tty->cr();
duke@435 1379 }
duke@435 1380
duke@435 1381 //------------------------------dump-------------------------------------------
duke@435 1382 // Dump loops by loop tree
duke@435 1383 void IdealLoopTree::dump( ) const {
duke@435 1384 dump_head();
duke@435 1385 if( _child ) _child->dump();
duke@435 1386 if( _next ) _next ->dump();
duke@435 1387 }
duke@435 1388
duke@435 1389 #endif
duke@435 1390
duke@435 1391 //=============================================================================
duke@435 1392 //------------------------------PhaseIdealLoop---------------------------------
duke@435 1393 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
duke@435 1394 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
duke@435 1395 PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs )
duke@435 1396 : PhaseTransform(Ideal_Loop),
duke@435 1397 _igvn(igvn),
duke@435 1398 _dom_lca_tags(C->comp_arena()) {
duke@435 1399 // Reset major-progress flag for the driver's heuristics
duke@435 1400 C->clear_major_progress();
duke@435 1401
duke@435 1402 #ifndef PRODUCT
duke@435 1403 // Capture for later assert
duke@435 1404 uint unique = C->unique();
duke@435 1405 _loop_invokes++;
duke@435 1406 _loop_work += unique;
duke@435 1407 #endif
duke@435 1408
duke@435 1409 // True if the method has at least 1 irreducible loop
duke@435 1410 _has_irreducible_loops = false;
duke@435 1411
duke@435 1412 _created_loop_node = false;
duke@435 1413
duke@435 1414 Arena *a = Thread::current()->resource_area();
duke@435 1415 VectorSet visited(a);
duke@435 1416 // Pre-grow the mapping from Nodes to IdealLoopTrees.
duke@435 1417 _nodes.map(C->unique(), NULL);
duke@435 1418 memset(_nodes.adr(), 0, wordSize * C->unique());
duke@435 1419
duke@435 1420 // Pre-build the top-level outermost loop tree entry
duke@435 1421 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
duke@435 1422 // Do not need a safepoint at the top level
duke@435 1423 _ltree_root->_has_sfpt = 1;
duke@435 1424
duke@435 1425 // Empty pre-order array
duke@435 1426 allocate_preorders();
duke@435 1427
duke@435 1428 // Build a loop tree on the fly. Build a mapping from CFG nodes to
duke@435 1429 // IdealLoopTree entries. Data nodes are NOT walked.
duke@435 1430 build_loop_tree();
duke@435 1431 // Check for bailout, and return
duke@435 1432 if (C->failing()) {
duke@435 1433 return;
duke@435 1434 }
duke@435 1435
duke@435 1436 // No loops after all
duke@435 1437 if( !_ltree_root->_child ) C->set_has_loops(false);
duke@435 1438
duke@435 1439 // There should always be an outer loop containing the Root and Return nodes.
duke@435 1440 // If not, we have a degenerate empty program. Bail out in this case.
duke@435 1441 if (!has_node(C->root())) {
duke@435 1442 C->clear_major_progress();
duke@435 1443 C->record_method_not_compilable("empty program detected during loop optimization");
duke@435 1444 return;
duke@435 1445 }
duke@435 1446
duke@435 1447 // Nothing to do, so get out
duke@435 1448 if( !C->has_loops() && !do_split_ifs && !verify_me) {
duke@435 1449 _igvn.optimize(); // Cleanup NeverBranches
duke@435 1450 return;
duke@435 1451 }
duke@435 1452
duke@435 1453 // Set loop nesting depth
duke@435 1454 _ltree_root->set_nest( 0 );
duke@435 1455
duke@435 1456 // Split shared headers and insert loop landing pads.
duke@435 1457 // Do not bother doing this on the Root loop of course.
duke@435 1458 if( !verify_me && _ltree_root->_child ) {
duke@435 1459 if( _ltree_root->_child->beautify_loops( this ) ) {
duke@435 1460 // Re-build loop tree!
duke@435 1461 _ltree_root->_child = NULL;
duke@435 1462 _nodes.clear();
duke@435 1463 reallocate_preorders();
duke@435 1464 build_loop_tree();
duke@435 1465 // Check for bailout, and return
duke@435 1466 if (C->failing()) {
duke@435 1467 return;
duke@435 1468 }
duke@435 1469 // Reset loop nesting depth
duke@435 1470 _ltree_root->set_nest( 0 );
never@657 1471
never@657 1472 C->print_method("After beautify loops", 3);
duke@435 1473 }
duke@435 1474 }
duke@435 1475
duke@435 1476 // Build Dominators for elision of NULL checks & loop finding.
duke@435 1477 // Since nodes do not have a slot for immediate dominator, make
duke@435 1478 // a persistant side array for that info indexed on node->_idx.
duke@435 1479 _idom_size = C->unique();
duke@435 1480 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
duke@435 1481 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
duke@435 1482 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
duke@435 1483 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
duke@435 1484
duke@435 1485 Dominators();
duke@435 1486
duke@435 1487 // As a side effect, Dominators removed any unreachable CFG paths
duke@435 1488 // into RegionNodes. It doesn't do this test against Root, so
duke@435 1489 // we do it here.
duke@435 1490 for( uint i = 1; i < C->root()->req(); i++ ) {
duke@435 1491 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
duke@435 1492 _igvn.hash_delete(C->root());
duke@435 1493 C->root()->del_req(i);
duke@435 1494 _igvn._worklist.push(C->root());
duke@435 1495 i--; // Rerun same iteration on compressed edges
duke@435 1496 }
duke@435 1497 }
duke@435 1498
duke@435 1499 // Given dominators, try to find inner loops with calls that must
duke@435 1500 // always be executed (call dominates loop tail). These loops do
duke@435 1501 // not need a seperate safepoint.
duke@435 1502 Node_List cisstack(a);
duke@435 1503 _ltree_root->check_safepts(visited, cisstack);
duke@435 1504
duke@435 1505 // Walk the DATA nodes and place into loops. Find earliest control
duke@435 1506 // node. For CFG nodes, the _nodes array starts out and remains
duke@435 1507 // holding the associated IdealLoopTree pointer. For DATA nodes, the
duke@435 1508 // _nodes array holds the earliest legal controlling CFG node.
duke@435 1509
duke@435 1510 // Allocate stack with enough space to avoid frequent realloc
duke@435 1511 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
duke@435 1512 Node_Stack nstack( a, stack_size );
duke@435 1513
duke@435 1514 visited.Clear();
duke@435 1515 Node_List worklist(a);
duke@435 1516 // Don't need C->root() on worklist since
duke@435 1517 // it will be processed among C->top() inputs
duke@435 1518 worklist.push( C->top() );
duke@435 1519 visited.set( C->top()->_idx ); // Set C->top() as visited now
duke@435 1520 build_loop_early( visited, worklist, nstack, verify_me );
duke@435 1521
duke@435 1522 // Given early legal placement, try finding counted loops. This placement
duke@435 1523 // is good enough to discover most loop invariants.
duke@435 1524 if( !verify_me )
duke@435 1525 _ltree_root->counted_loop( this );
duke@435 1526
duke@435 1527 // Find latest loop placement. Find ideal loop placement.
duke@435 1528 visited.Clear();
duke@435 1529 init_dom_lca_tags();
duke@435 1530 // Need C->root() on worklist when processing outs
duke@435 1531 worklist.push( C->root() );
duke@435 1532 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 1533 worklist.push( C->top() );
duke@435 1534 build_loop_late( visited, worklist, nstack, verify_me );
duke@435 1535
duke@435 1536 // clear out the dead code
duke@435 1537 while(_deadlist.size()) {
duke@435 1538 igvn.remove_globally_dead_node(_deadlist.pop());
duke@435 1539 }
duke@435 1540
duke@435 1541 #ifndef PRODUCT
duke@435 1542 C->verify_graph_edges();
duke@435 1543 if( verify_me ) { // Nested verify pass?
duke@435 1544 // Check to see if the verify mode is broken
duke@435 1545 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
duke@435 1546 return;
duke@435 1547 }
duke@435 1548 if( VerifyLoopOptimizations ) verify();
duke@435 1549 #endif
duke@435 1550
duke@435 1551 if (ReassociateInvariants) {
duke@435 1552 // Reassociate invariants and prep for split_thru_phi
duke@435 1553 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1554 IdealLoopTree* lpt = iter.current();
duke@435 1555 if (!lpt->is_counted() || !lpt->is_inner()) continue;
duke@435 1556
duke@435 1557 lpt->reassociate_invariants(this);
duke@435 1558
duke@435 1559 // Because RCE opportunities can be masked by split_thru_phi,
duke@435 1560 // look for RCE candidates and inhibit split_thru_phi
duke@435 1561 // on just their loop-phi's for this pass of loop opts
duke@435 1562 if( SplitIfBlocks && do_split_ifs ) {
duke@435 1563 if (lpt->policy_range_check(this)) {
kvn@474 1564 lpt->_rce_candidate = 1; // = true
duke@435 1565 }
duke@435 1566 }
duke@435 1567 }
duke@435 1568 }
duke@435 1569
duke@435 1570 // Check for aggressive application of split-if and other transforms
duke@435 1571 // that require basic-block info (like cloning through Phi's)
duke@435 1572 if( SplitIfBlocks && do_split_ifs ) {
duke@435 1573 visited.Clear();
duke@435 1574 split_if_with_blocks( visited, nstack );
duke@435 1575 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
duke@435 1576 }
duke@435 1577
duke@435 1578 // Perform iteration-splitting on inner loops. Split iterations to avoid
duke@435 1579 // range checks or one-shot null checks.
duke@435 1580
duke@435 1581 // If split-if's didn't hack the graph too bad (no CFG changes)
duke@435 1582 // then do loop opts.
duke@435 1583 if( C->has_loops() && !C->major_progress() ) {
duke@435 1584 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
duke@435 1585 _ltree_root->_child->iteration_split( this, worklist );
duke@435 1586 // No verify after peeling! GCM has hoisted code out of the loop.
duke@435 1587 // After peeling, the hoisted code could sink inside the peeled area.
duke@435 1588 // The peeling code does not try to recompute the best location for
duke@435 1589 // all the code before the peeled area, so the verify pass will always
duke@435 1590 // complain about it.
duke@435 1591 }
duke@435 1592 // Do verify graph edges in any case
duke@435 1593 NOT_PRODUCT( C->verify_graph_edges(); );
duke@435 1594
duke@435 1595 if( !do_split_ifs ) {
duke@435 1596 // We saw major progress in Split-If to get here. We forced a
duke@435 1597 // pass with unrolling and not split-if, however more split-if's
duke@435 1598 // might make progress. If the unrolling didn't make progress
duke@435 1599 // then the major-progress flag got cleared and we won't try
duke@435 1600 // another round of Split-If. In particular the ever-common
duke@435 1601 // instance-of/check-cast pattern requires at least 2 rounds of
duke@435 1602 // Split-If to clear out.
duke@435 1603 C->set_major_progress();
duke@435 1604 }
duke@435 1605
duke@435 1606 // Repeat loop optimizations if new loops were seen
duke@435 1607 if (created_loop_node()) {
duke@435 1608 C->set_major_progress();
duke@435 1609 }
duke@435 1610
duke@435 1611 // Convert scalar to superword operations
duke@435 1612
duke@435 1613 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
duke@435 1614 // SuperWord transform
duke@435 1615 SuperWord sw(this);
duke@435 1616 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1617 IdealLoopTree* lpt = iter.current();
duke@435 1618 if (lpt->is_counted()) {
duke@435 1619 sw.transform_loop(lpt);
duke@435 1620 }
duke@435 1621 }
duke@435 1622 }
duke@435 1623
duke@435 1624 // Cleanup any modified bits
duke@435 1625 _igvn.optimize();
duke@435 1626
duke@435 1627 // Do not repeat loop optimizations if irreducible loops are present
duke@435 1628 // by claiming no-progress.
duke@435 1629 if( _has_irreducible_loops )
duke@435 1630 C->clear_major_progress();
duke@435 1631 }
duke@435 1632
duke@435 1633 #ifndef PRODUCT
duke@435 1634 //------------------------------print_statistics-------------------------------
duke@435 1635 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
duke@435 1636 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
duke@435 1637 void PhaseIdealLoop::print_statistics() {
duke@435 1638 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
duke@435 1639 }
duke@435 1640
duke@435 1641 //------------------------------verify-----------------------------------------
duke@435 1642 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
duke@435 1643 static int fail; // debug only, so its multi-thread dont care
duke@435 1644 void PhaseIdealLoop::verify() const {
duke@435 1645 int old_progress = C->major_progress();
duke@435 1646 ResourceMark rm;
duke@435 1647 PhaseIdealLoop loop_verify( _igvn, this, false );
duke@435 1648 VectorSet visited(Thread::current()->resource_area());
duke@435 1649
duke@435 1650 fail = 0;
duke@435 1651 verify_compare( C->root(), &loop_verify, visited );
duke@435 1652 assert( fail == 0, "verify loops failed" );
duke@435 1653 // Verify loop structure is the same
duke@435 1654 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
duke@435 1655 // Reset major-progress. It was cleared by creating a verify version of
duke@435 1656 // PhaseIdealLoop.
duke@435 1657 for( int i=0; i<old_progress; i++ )
duke@435 1658 C->set_major_progress();
duke@435 1659 }
duke@435 1660
duke@435 1661 //------------------------------verify_compare---------------------------------
duke@435 1662 // Make sure me and the given PhaseIdealLoop agree on key data structures
duke@435 1663 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
duke@435 1664 if( !n ) return;
duke@435 1665 if( visited.test_set( n->_idx ) ) return;
duke@435 1666 if( !_nodes[n->_idx] ) { // Unreachable
duke@435 1667 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
duke@435 1668 return;
duke@435 1669 }
duke@435 1670
duke@435 1671 uint i;
duke@435 1672 for( i = 0; i < n->req(); i++ )
duke@435 1673 verify_compare( n->in(i), loop_verify, visited );
duke@435 1674
duke@435 1675 // Check the '_nodes' block/loop structure
duke@435 1676 i = n->_idx;
duke@435 1677 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
duke@435 1678 if( _nodes[i] != loop_verify->_nodes[i] &&
duke@435 1679 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
duke@435 1680 tty->print("Mismatched control setting for: ");
duke@435 1681 n->dump();
duke@435 1682 if( fail++ > 10 ) return;
duke@435 1683 Node *c = get_ctrl_no_update(n);
duke@435 1684 tty->print("We have it as: ");
duke@435 1685 if( c->in(0) ) c->dump();
duke@435 1686 else tty->print_cr("N%d",c->_idx);
duke@435 1687 tty->print("Verify thinks: ");
duke@435 1688 if( loop_verify->has_ctrl(n) )
duke@435 1689 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 1690 else
duke@435 1691 loop_verify->get_loop_idx(n)->dump();
duke@435 1692 tty->cr();
duke@435 1693 }
duke@435 1694 } else { // We have a loop
duke@435 1695 IdealLoopTree *us = get_loop_idx(n);
duke@435 1696 if( loop_verify->has_ctrl(n) ) {
duke@435 1697 tty->print("Mismatched loop setting for: ");
duke@435 1698 n->dump();
duke@435 1699 if( fail++ > 10 ) return;
duke@435 1700 tty->print("We have it as: ");
duke@435 1701 us->dump();
duke@435 1702 tty->print("Verify thinks: ");
duke@435 1703 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 1704 tty->cr();
duke@435 1705 } else if (!C->major_progress()) {
duke@435 1706 // Loop selection can be messed up if we did a major progress
duke@435 1707 // operation, like split-if. Do not verify in that case.
duke@435 1708 IdealLoopTree *them = loop_verify->get_loop_idx(n);
duke@435 1709 if( us->_head != them->_head || us->_tail != them->_tail ) {
duke@435 1710 tty->print("Unequals loops for: ");
duke@435 1711 n->dump();
duke@435 1712 if( fail++ > 10 ) return;
duke@435 1713 tty->print("We have it as: ");
duke@435 1714 us->dump();
duke@435 1715 tty->print("Verify thinks: ");
duke@435 1716 them->dump();
duke@435 1717 tty->cr();
duke@435 1718 }
duke@435 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722 // Check for immediate dominators being equal
duke@435 1723 if( i >= _idom_size ) {
duke@435 1724 if( !n->is_CFG() ) return;
duke@435 1725 tty->print("CFG Node with no idom: ");
duke@435 1726 n->dump();
duke@435 1727 return;
duke@435 1728 }
duke@435 1729 if( !n->is_CFG() ) return;
duke@435 1730 if( n == C->root() ) return; // No IDOM here
duke@435 1731
duke@435 1732 assert(n->_idx == i, "sanity");
duke@435 1733 Node *id = idom_no_update(n);
duke@435 1734 if( id != loop_verify->idom_no_update(n) ) {
duke@435 1735 tty->print("Unequals idoms for: ");
duke@435 1736 n->dump();
duke@435 1737 if( fail++ > 10 ) return;
duke@435 1738 tty->print("We have it as: ");
duke@435 1739 id->dump();
duke@435 1740 tty->print("Verify thinks: ");
duke@435 1741 loop_verify->idom_no_update(n)->dump();
duke@435 1742 tty->cr();
duke@435 1743 }
duke@435 1744
duke@435 1745 }
duke@435 1746
duke@435 1747 //------------------------------verify_tree------------------------------------
duke@435 1748 // Verify that tree structures match. Because the CFG can change, siblings
duke@435 1749 // within the loop tree can be reordered. We attempt to deal with that by
duke@435 1750 // reordering the verify's loop tree if possible.
duke@435 1751 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
duke@435 1752 assert( _parent == parent, "Badly formed loop tree" );
duke@435 1753
duke@435 1754 // Siblings not in same order? Attempt to re-order.
duke@435 1755 if( _head != loop->_head ) {
duke@435 1756 // Find _next pointer to update
duke@435 1757 IdealLoopTree **pp = &loop->_parent->_child;
duke@435 1758 while( *pp != loop )
duke@435 1759 pp = &((*pp)->_next);
duke@435 1760 // Find proper sibling to be next
duke@435 1761 IdealLoopTree **nn = &loop->_next;
duke@435 1762 while( (*nn) && (*nn)->_head != _head )
duke@435 1763 nn = &((*nn)->_next);
duke@435 1764
duke@435 1765 // Check for no match.
duke@435 1766 if( !(*nn) ) {
duke@435 1767 // Annoyingly, irreducible loops can pick different headers
duke@435 1768 // after a major_progress operation, so the rest of the loop
duke@435 1769 // tree cannot be matched.
duke@435 1770 if (_irreducible && Compile::current()->major_progress()) return;
duke@435 1771 assert( 0, "failed to match loop tree" );
duke@435 1772 }
duke@435 1773
duke@435 1774 // Move (*nn) to (*pp)
duke@435 1775 IdealLoopTree *hit = *nn;
duke@435 1776 *nn = hit->_next;
duke@435 1777 hit->_next = loop;
duke@435 1778 *pp = loop;
duke@435 1779 loop = hit;
duke@435 1780 // Now try again to verify
duke@435 1781 }
duke@435 1782
duke@435 1783 assert( _head == loop->_head , "mismatched loop head" );
duke@435 1784 Node *tail = _tail; // Inline a non-updating version of
duke@435 1785 while( !tail->in(0) ) // the 'tail()' call.
duke@435 1786 tail = tail->in(1);
duke@435 1787 assert( tail == loop->_tail, "mismatched loop tail" );
duke@435 1788
duke@435 1789 // Counted loops that are guarded should be able to find their guards
duke@435 1790 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
duke@435 1791 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1792 Node *init = cl->init_trip();
duke@435 1793 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1794 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1795 Node *iff = ctrl->in(0);
duke@435 1796 assert( iff->Opcode() == Op_If, "" );
duke@435 1797 Node *bol = iff->in(1);
duke@435 1798 assert( bol->Opcode() == Op_Bool, "" );
duke@435 1799 Node *cmp = bol->in(1);
duke@435 1800 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 1801 Node *add = cmp->in(1);
duke@435 1802 Node *opaq;
duke@435 1803 if( add->Opcode() == Op_Opaque1 ) {
duke@435 1804 opaq = add;
duke@435 1805 } else {
duke@435 1806 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
duke@435 1807 assert( add == init, "" );
duke@435 1808 opaq = cmp->in(2);
duke@435 1809 }
duke@435 1810 assert( opaq->Opcode() == Op_Opaque1, "" );
duke@435 1811
duke@435 1812 }
duke@435 1813
duke@435 1814 if (_child != NULL) _child->verify_tree(loop->_child, this);
duke@435 1815 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
duke@435 1816 // Innermost loops need to verify loop bodies,
duke@435 1817 // but only if no 'major_progress'
duke@435 1818 int fail = 0;
duke@435 1819 if (!Compile::current()->major_progress() && _child == NULL) {
duke@435 1820 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 1821 Node *n = _body.at(i);
duke@435 1822 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 1823 uint j;
duke@435 1824 for( j = 0; j < loop->_body.size(); j++ )
duke@435 1825 if( loop->_body.at(j) == n )
duke@435 1826 break;
duke@435 1827 if( j == loop->_body.size() ) { // Not found in loop body
duke@435 1828 // Last ditch effort to avoid assertion: Its possible that we
duke@435 1829 // have some users (so outcnt not zero) but are still dead.
duke@435 1830 // Try to find from root.
duke@435 1831 if (Compile::current()->root()->find(n->_idx)) {
duke@435 1832 fail++;
duke@435 1833 tty->print("We have that verify does not: ");
duke@435 1834 n->dump();
duke@435 1835 }
duke@435 1836 }
duke@435 1837 }
duke@435 1838 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
duke@435 1839 Node *n = loop->_body.at(i2);
duke@435 1840 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 1841 uint j;
duke@435 1842 for( j = 0; j < _body.size(); j++ )
duke@435 1843 if( _body.at(j) == n )
duke@435 1844 break;
duke@435 1845 if( j == _body.size() ) { // Not found in loop body
duke@435 1846 // Last ditch effort to avoid assertion: Its possible that we
duke@435 1847 // have some users (so outcnt not zero) but are still dead.
duke@435 1848 // Try to find from root.
duke@435 1849 if (Compile::current()->root()->find(n->_idx)) {
duke@435 1850 fail++;
duke@435 1851 tty->print("Verify has that we do not: ");
duke@435 1852 n->dump();
duke@435 1853 }
duke@435 1854 }
duke@435 1855 }
duke@435 1856 assert( !fail, "loop body mismatch" );
duke@435 1857 }
duke@435 1858 }
duke@435 1859
duke@435 1860 #endif
duke@435 1861
duke@435 1862 //------------------------------set_idom---------------------------------------
duke@435 1863 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
duke@435 1864 uint idx = d->_idx;
duke@435 1865 if (idx >= _idom_size) {
duke@435 1866 uint newsize = _idom_size<<1;
duke@435 1867 while( idx >= newsize ) {
duke@435 1868 newsize <<= 1;
duke@435 1869 }
duke@435 1870 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
duke@435 1871 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
duke@435 1872 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
duke@435 1873 _idom_size = newsize;
duke@435 1874 }
duke@435 1875 _idom[idx] = n;
duke@435 1876 _dom_depth[idx] = dom_depth;
duke@435 1877 }
duke@435 1878
duke@435 1879 //------------------------------recompute_dom_depth---------------------------------------
duke@435 1880 // The dominator tree is constructed with only parent pointers.
duke@435 1881 // This recomputes the depth in the tree by first tagging all
duke@435 1882 // nodes as "no depth yet" marker. The next pass then runs up
duke@435 1883 // the dom tree from each node marked "no depth yet", and computes
duke@435 1884 // the depth on the way back down.
duke@435 1885 void PhaseIdealLoop::recompute_dom_depth() {
duke@435 1886 uint no_depth_marker = C->unique();
duke@435 1887 uint i;
duke@435 1888 // Initialize depth to "no depth yet"
duke@435 1889 for (i = 0; i < _idom_size; i++) {
duke@435 1890 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
duke@435 1891 _dom_depth[i] = no_depth_marker;
duke@435 1892 }
duke@435 1893 }
duke@435 1894 if (_dom_stk == NULL) {
duke@435 1895 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
duke@435 1896 if (init_size < 10) init_size = 10;
duke@435 1897 _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
duke@435 1898 }
duke@435 1899 // Compute new depth for each node.
duke@435 1900 for (i = 0; i < _idom_size; i++) {
duke@435 1901 uint j = i;
duke@435 1902 // Run up the dom tree to find a node with a depth
duke@435 1903 while (_dom_depth[j] == no_depth_marker) {
duke@435 1904 _dom_stk->push(j);
duke@435 1905 j = _idom[j]->_idx;
duke@435 1906 }
duke@435 1907 // Compute the depth on the way back down this tree branch
duke@435 1908 uint dd = _dom_depth[j] + 1;
duke@435 1909 while (_dom_stk->length() > 0) {
duke@435 1910 uint j = _dom_stk->pop();
duke@435 1911 _dom_depth[j] = dd;
duke@435 1912 dd++;
duke@435 1913 }
duke@435 1914 }
duke@435 1915 }
duke@435 1916
duke@435 1917 //------------------------------sort-------------------------------------------
duke@435 1918 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
duke@435 1919 // loop tree, not the root.
duke@435 1920 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
duke@435 1921 if( !innermost ) return loop; // New innermost loop
duke@435 1922
duke@435 1923 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
duke@435 1924 assert( loop_preorder, "not yet post-walked loop" );
duke@435 1925 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
duke@435 1926 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
duke@435 1927
duke@435 1928 // Insert at start of list
duke@435 1929 while( l ) { // Insertion sort based on pre-order
duke@435 1930 if( l == loop ) return innermost; // Already on list!
duke@435 1931 int l_preorder = get_preorder(l->_head); // Cache pre-order number
duke@435 1932 assert( l_preorder, "not yet post-walked l" );
duke@435 1933 // Check header pre-order number to figure proper nesting
duke@435 1934 if( loop_preorder > l_preorder )
duke@435 1935 break; // End of insertion
duke@435 1936 // If headers tie (e.g., shared headers) check tail pre-order numbers.
duke@435 1937 // Since I split shared headers, you'd think this could not happen.
duke@435 1938 // BUT: I must first do the preorder numbering before I can discover I
duke@435 1939 // have shared headers, so the split headers all get the same preorder
duke@435 1940 // number as the RegionNode they split from.
duke@435 1941 if( loop_preorder == l_preorder &&
duke@435 1942 get_preorder(loop->_tail) < get_preorder(l->_tail) )
duke@435 1943 break; // Also check for shared headers (same pre#)
duke@435 1944 pp = &l->_parent; // Chain up list
duke@435 1945 l = *pp;
duke@435 1946 }
duke@435 1947 // Link into list
duke@435 1948 // Point predecessor to me
duke@435 1949 *pp = loop;
duke@435 1950 // Point me to successor
duke@435 1951 IdealLoopTree *p = loop->_parent;
duke@435 1952 loop->_parent = l; // Point me to successor
duke@435 1953 if( p ) sort( p, innermost ); // Insert my parents into list as well
duke@435 1954 return innermost;
duke@435 1955 }
duke@435 1956
duke@435 1957 //------------------------------build_loop_tree--------------------------------
duke@435 1958 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
duke@435 1959 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
duke@435 1960 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
duke@435 1961 // tightest enclosing IdealLoopTree for post-walked.
duke@435 1962 //
duke@435 1963 // During my forward walk I do a short 1-layer lookahead to see if I can find
duke@435 1964 // a loop backedge with that doesn't have any work on the backedge. This
duke@435 1965 // helps me construct nested loops with shared headers better.
duke@435 1966 //
duke@435 1967 // Once I've done the forward recursion, I do the post-work. For each child
duke@435 1968 // I check to see if there is a backedge. Backedges define a loop! I
duke@435 1969 // insert an IdealLoopTree at the target of the backedge.
duke@435 1970 //
duke@435 1971 // During the post-work I also check to see if I have several children
duke@435 1972 // belonging to different loops. If so, then this Node is a decision point
duke@435 1973 // where control flow can choose to change loop nests. It is at this
duke@435 1974 // decision point where I can figure out how loops are nested. At this
duke@435 1975 // time I can properly order the different loop nests from my children.
duke@435 1976 // Note that there may not be any backedges at the decision point!
duke@435 1977 //
duke@435 1978 // Since the decision point can be far removed from the backedges, I can't
duke@435 1979 // order my loops at the time I discover them. Thus at the decision point
duke@435 1980 // I need to inspect loop header pre-order numbers to properly nest my
duke@435 1981 // loops. This means I need to sort my childrens' loops by pre-order.
duke@435 1982 // The sort is of size number-of-control-children, which generally limits
duke@435 1983 // it to size 2 (i.e., I just choose between my 2 target loops).
duke@435 1984 void PhaseIdealLoop::build_loop_tree() {
duke@435 1985 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 1986 GrowableArray <Node *> bltstack(C->unique() >> 1);
duke@435 1987 Node *n = C->root();
duke@435 1988 bltstack.push(n);
duke@435 1989 int pre_order = 1;
duke@435 1990 int stack_size;
duke@435 1991
duke@435 1992 while ( ( stack_size = bltstack.length() ) != 0 ) {
duke@435 1993 n = bltstack.top(); // Leave node on stack
duke@435 1994 if ( !is_visited(n) ) {
duke@435 1995 // ---- Pre-pass Work ----
duke@435 1996 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 1997
duke@435 1998 set_preorder_visited( n, pre_order ); // set as visited
duke@435 1999
duke@435 2000 // ---- Scan over children ----
duke@435 2001 // Scan first over control projections that lead to loop headers.
duke@435 2002 // This helps us find inner-to-outer loops with shared headers better.
duke@435 2003
duke@435 2004 // Scan children's children for loop headers.
duke@435 2005 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
duke@435 2006 Node* m = n->raw_out(i); // Child
duke@435 2007 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
duke@435 2008 // Scan over children's children to find loop
duke@435 2009 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2010 Node* l = m->fast_out(j);
duke@435 2011 if( is_visited(l) && // Been visited?
duke@435 2012 !is_postvisited(l) && // But not post-visited
duke@435 2013 get_preorder(l) < pre_order ) { // And smaller pre-order
duke@435 2014 // Found! Scan the DFS down this path before doing other paths
duke@435 2015 bltstack.push(m);
duke@435 2016 break;
duke@435 2017 }
duke@435 2018 }
duke@435 2019 }
duke@435 2020 }
duke@435 2021 pre_order++;
duke@435 2022 }
duke@435 2023 else if ( !is_postvisited(n) ) {
duke@435 2024 // Note: build_loop_tree_impl() adds out edges on rare occasions,
duke@435 2025 // such as com.sun.rsasign.am::a.
duke@435 2026 // For non-recursive version, first, process current children.
duke@435 2027 // On next iteration, check if additional children were added.
duke@435 2028 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
duke@435 2029 Node* u = n->raw_out(k);
duke@435 2030 if ( u->is_CFG() && !is_visited(u) ) {
duke@435 2031 bltstack.push(u);
duke@435 2032 }
duke@435 2033 }
duke@435 2034 if ( bltstack.length() == stack_size ) {
duke@435 2035 // There were no additional children, post visit node now
duke@435 2036 (void)bltstack.pop(); // Remove node from stack
duke@435 2037 pre_order = build_loop_tree_impl( n, pre_order );
duke@435 2038 // Check for bailout
duke@435 2039 if (C->failing()) {
duke@435 2040 return;
duke@435 2041 }
duke@435 2042 // Check to grow _preorders[] array for the case when
duke@435 2043 // build_loop_tree_impl() adds new nodes.
duke@435 2044 check_grow_preorders();
duke@435 2045 }
duke@435 2046 }
duke@435 2047 else {
duke@435 2048 (void)bltstack.pop(); // Remove post-visited node from stack
duke@435 2049 }
duke@435 2050 }
duke@435 2051 }
duke@435 2052
duke@435 2053 //------------------------------build_loop_tree_impl---------------------------
duke@435 2054 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
duke@435 2055 // ---- Post-pass Work ----
duke@435 2056 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2057
duke@435 2058 // Tightest enclosing loop for this Node
duke@435 2059 IdealLoopTree *innermost = NULL;
duke@435 2060
duke@435 2061 // For all children, see if any edge is a backedge. If so, make a loop
duke@435 2062 // for it. Then find the tightest enclosing loop for the self Node.
duke@435 2063 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2064 Node* m = n->fast_out(i); // Child
duke@435 2065 if( n == m ) continue; // Ignore control self-cycles
duke@435 2066 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
duke@435 2067
duke@435 2068 IdealLoopTree *l; // Child's loop
duke@435 2069 if( !is_postvisited(m) ) { // Child visited but not post-visited?
duke@435 2070 // Found a backedge
duke@435 2071 assert( get_preorder(m) < pre_order, "should be backedge" );
duke@435 2072 // Check for the RootNode, which is already a LoopNode and is allowed
duke@435 2073 // to have multiple "backedges".
duke@435 2074 if( m == C->root()) { // Found the root?
duke@435 2075 l = _ltree_root; // Root is the outermost LoopNode
duke@435 2076 } else { // Else found a nested loop
duke@435 2077 // Insert a LoopNode to mark this loop.
duke@435 2078 l = new IdealLoopTree(this, m, n);
duke@435 2079 } // End of Else found a nested loop
duke@435 2080 if( !has_loop(m) ) // If 'm' does not already have a loop set
duke@435 2081 set_loop(m, l); // Set loop header to loop now
duke@435 2082
duke@435 2083 } else { // Else not a nested loop
duke@435 2084 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
duke@435 2085 l = get_loop(m); // Get previously determined loop
duke@435 2086 // If successor is header of a loop (nest), move up-loop till it
duke@435 2087 // is a member of some outer enclosing loop. Since there are no
duke@435 2088 // shared headers (I've split them already) I only need to go up
duke@435 2089 // at most 1 level.
duke@435 2090 while( l && l->_head == m ) // Successor heads loop?
duke@435 2091 l = l->_parent; // Move up 1 for me
duke@435 2092 // If this loop is not properly parented, then this loop
duke@435 2093 // has no exit path out, i.e. its an infinite loop.
duke@435 2094 if( !l ) {
duke@435 2095 // Make loop "reachable" from root so the CFG is reachable. Basically
duke@435 2096 // insert a bogus loop exit that is never taken. 'm', the loop head,
duke@435 2097 // points to 'n', one (of possibly many) fall-in paths. There may be
duke@435 2098 // many backedges as well.
duke@435 2099
duke@435 2100 // Here I set the loop to be the root loop. I could have, after
duke@435 2101 // inserting a bogus loop exit, restarted the recursion and found my
duke@435 2102 // new loop exit. This would make the infinite loop a first-class
duke@435 2103 // loop and it would then get properly optimized. What's the use of
duke@435 2104 // optimizing an infinite loop?
duke@435 2105 l = _ltree_root; // Oops, found infinite loop
duke@435 2106
duke@435 2107 // Insert the NeverBranch between 'm' and it's control user.
duke@435 2108 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
duke@435 2109 _igvn.register_new_node_with_optimizer(iff);
duke@435 2110 set_loop(iff, l);
duke@435 2111 Node *if_t = new (C, 1) CProjNode( iff, 0 );
duke@435 2112 _igvn.register_new_node_with_optimizer(if_t);
duke@435 2113 set_loop(if_t, l);
duke@435 2114
duke@435 2115 Node* cfg = NULL; // Find the One True Control User of m
duke@435 2116 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2117 Node* x = m->fast_out(j);
duke@435 2118 if (x->is_CFG() && x != m && x != iff)
duke@435 2119 { cfg = x; break; }
duke@435 2120 }
duke@435 2121 assert(cfg != NULL, "must find the control user of m");
duke@435 2122 uint k = 0; // Probably cfg->in(0)
duke@435 2123 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
duke@435 2124 cfg->set_req( k, if_t ); // Now point to NeverBranch
duke@435 2125
duke@435 2126 // Now create the never-taken loop exit
duke@435 2127 Node *if_f = new (C, 1) CProjNode( iff, 1 );
duke@435 2128 _igvn.register_new_node_with_optimizer(if_f);
duke@435 2129 set_loop(if_f, l);
duke@435 2130 // Find frame ptr for Halt. Relies on the optimizer
duke@435 2131 // V-N'ing. Easier and quicker than searching through
duke@435 2132 // the program structure.
duke@435 2133 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
duke@435 2134 _igvn.register_new_node_with_optimizer(frame);
duke@435 2135 // Halt & Catch Fire
duke@435 2136 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
duke@435 2137 _igvn.register_new_node_with_optimizer(halt);
duke@435 2138 set_loop(halt, l);
duke@435 2139 C->root()->add_req(halt);
duke@435 2140 set_loop(C->root(), _ltree_root);
duke@435 2141 }
duke@435 2142 }
duke@435 2143 // Weeny check for irreducible. This child was already visited (this
duke@435 2144 // IS the post-work phase). Is this child's loop header post-visited
duke@435 2145 // as well? If so, then I found another entry into the loop.
duke@435 2146 while( is_postvisited(l->_head) ) {
duke@435 2147 // found irreducible
kvn@474 2148 l->_irreducible = 1; // = true
duke@435 2149 l = l->_parent;
duke@435 2150 _has_irreducible_loops = true;
duke@435 2151 // Check for bad CFG here to prevent crash, and bailout of compile
duke@435 2152 if (l == NULL) {
duke@435 2153 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
duke@435 2154 return pre_order;
duke@435 2155 }
duke@435 2156 }
duke@435 2157
duke@435 2158 // This Node might be a decision point for loops. It is only if
duke@435 2159 // it's children belong to several different loops. The sort call
duke@435 2160 // does a trivial amount of work if there is only 1 child or all
duke@435 2161 // children belong to the same loop. If however, the children
duke@435 2162 // belong to different loops, the sort call will properly set the
duke@435 2163 // _parent pointers to show how the loops nest.
duke@435 2164 //
duke@435 2165 // In any case, it returns the tightest enclosing loop.
duke@435 2166 innermost = sort( l, innermost );
duke@435 2167 }
duke@435 2168
duke@435 2169 // Def-use info will have some dead stuff; dead stuff will have no
duke@435 2170 // loop decided on.
duke@435 2171
duke@435 2172 // Am I a loop header? If so fix up my parent's child and next ptrs.
duke@435 2173 if( innermost && innermost->_head == n ) {
duke@435 2174 assert( get_loop(n) == innermost, "" );
duke@435 2175 IdealLoopTree *p = innermost->_parent;
duke@435 2176 IdealLoopTree *l = innermost;
duke@435 2177 while( p && l->_head == n ) {
duke@435 2178 l->_next = p->_child; // Put self on parents 'next child'
duke@435 2179 p->_child = l; // Make self as first child of parent
duke@435 2180 l = p; // Now walk up the parent chain
duke@435 2181 p = l->_parent;
duke@435 2182 }
duke@435 2183 } else {
duke@435 2184 // Note that it is possible for a LoopNode to reach here, if the
duke@435 2185 // backedge has been made unreachable (hence the LoopNode no longer
duke@435 2186 // denotes a Loop, and will eventually be removed).
duke@435 2187
duke@435 2188 // Record tightest enclosing loop for self. Mark as post-visited.
duke@435 2189 set_loop(n, innermost);
duke@435 2190 // Also record has_call flag early on
duke@435 2191 if( innermost ) {
duke@435 2192 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
duke@435 2193 // Do not count uncommon calls
duke@435 2194 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
duke@435 2195 Node *iff = n->in(0)->in(0);
duke@435 2196 if( !iff->is_If() ||
duke@435 2197 (n->in(0)->Opcode() == Op_IfFalse &&
duke@435 2198 (1.0 - iff->as_If()->_prob) >= 0.01) ||
duke@435 2199 (iff->as_If()->_prob >= 0.01) )
duke@435 2200 innermost->_has_call = 1;
duke@435 2201 }
kvn@474 2202 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
kvn@474 2203 // Disable loop optimizations if the loop has a scalar replaceable
kvn@474 2204 // allocation. This disabling may cause a potential performance lost
kvn@474 2205 // if the allocation is not eliminated for some reason.
kvn@474 2206 innermost->_allow_optimizations = false;
kvn@474 2207 innermost->_has_call = 1; // = true
duke@435 2208 }
duke@435 2209 }
duke@435 2210 }
duke@435 2211
duke@435 2212 // Flag as post-visited now
duke@435 2213 set_postvisited(n);
duke@435 2214 return pre_order;
duke@435 2215 }
duke@435 2216
duke@435 2217
duke@435 2218 //------------------------------build_loop_early-------------------------------
duke@435 2219 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2220 // First pass computes the earliest controlling node possible. This is the
duke@435 2221 // controlling input with the deepest dominating depth.
duke@435 2222 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
duke@435 2223 while (worklist.size() != 0) {
duke@435 2224 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 2225 // on nstack's top.
duke@435 2226 Node *nstack_top_n = worklist.pop();
duke@435 2227 uint nstack_top_i = 0;
duke@435 2228 //while_nstack_nonempty:
duke@435 2229 while (true) {
duke@435 2230 // Get parent node and next input's index from stack's top.
duke@435 2231 Node *n = nstack_top_n;
duke@435 2232 uint i = nstack_top_i;
duke@435 2233 uint cnt = n->req(); // Count of inputs
duke@435 2234 if (i == 0) { // Pre-process the node.
duke@435 2235 if( has_node(n) && // Have either loop or control already?
duke@435 2236 !has_ctrl(n) ) { // Have loop picked out already?
duke@435 2237 // During "merge_many_backedges" we fold up several nested loops
duke@435 2238 // into a single loop. This makes the members of the original
duke@435 2239 // loop bodies pointing to dead loops; they need to move up
duke@435 2240 // to the new UNION'd larger loop. I set the _head field of these
duke@435 2241 // dead loops to NULL and the _parent field points to the owning
duke@435 2242 // loop. Shades of UNION-FIND algorithm.
duke@435 2243 IdealLoopTree *ilt;
duke@435 2244 while( !(ilt = get_loop(n))->_head ) {
duke@435 2245 // Normally I would use a set_loop here. But in this one special
duke@435 2246 // case, it is legal (and expected) to change what loop a Node
duke@435 2247 // belongs to.
duke@435 2248 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
duke@435 2249 }
duke@435 2250 // Remove safepoints ONLY if I've already seen I don't need one.
duke@435 2251 // (the old code here would yank a 2nd safepoint after seeing a
duke@435 2252 // first one, even though the 1st did not dominate in the loop body
duke@435 2253 // and thus could be avoided indefinitely)
duke@435 2254 if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
duke@435 2255 is_deleteable_safept(n)) {
duke@435 2256 Node *in = n->in(TypeFunc::Control);
duke@435 2257 lazy_replace(n,in); // Pull safepoint now
duke@435 2258 // Carry on with the recursion "as if" we are walking
duke@435 2259 // only the control input
duke@435 2260 if( !visited.test_set( in->_idx ) ) {
duke@435 2261 worklist.push(in); // Visit this guy later, using worklist
duke@435 2262 }
duke@435 2263 // Get next node from nstack:
duke@435 2264 // - skip n's inputs processing by setting i > cnt;
duke@435 2265 // - we also will not call set_early_ctrl(n) since
duke@435 2266 // has_node(n) == true (see the condition above).
duke@435 2267 i = cnt + 1;
duke@435 2268 }
duke@435 2269 }
duke@435 2270 } // if (i == 0)
duke@435 2271
duke@435 2272 // Visit all inputs
duke@435 2273 bool done = true; // Assume all n's inputs will be processed
duke@435 2274 while (i < cnt) {
duke@435 2275 Node *in = n->in(i);
duke@435 2276 ++i;
duke@435 2277 if (in == NULL) continue;
duke@435 2278 if (in->pinned() && !in->is_CFG())
duke@435 2279 set_ctrl(in, in->in(0));
duke@435 2280 int is_visited = visited.test_set( in->_idx );
duke@435 2281 if (!has_node(in)) { // No controlling input yet?
duke@435 2282 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
duke@435 2283 assert( !is_visited, "visit only once" );
duke@435 2284 nstack.push(n, i); // Save parent node and next input's index.
duke@435 2285 nstack_top_n = in; // Process current input now.
duke@435 2286 nstack_top_i = 0;
duke@435 2287 done = false; // Not all n's inputs processed.
duke@435 2288 break; // continue while_nstack_nonempty;
duke@435 2289 } else if (!is_visited) {
duke@435 2290 // This guy has a location picked out for him, but has not yet
duke@435 2291 // been visited. Happens to all CFG nodes, for instance.
duke@435 2292 // Visit him using the worklist instead of recursion, to break
duke@435 2293 // cycles. Since he has a location already we do not need to
duke@435 2294 // find his location before proceeding with the current Node.
duke@435 2295 worklist.push(in); // Visit this guy later, using worklist
duke@435 2296 }
duke@435 2297 }
duke@435 2298 if (done) {
duke@435 2299 // All of n's inputs have been processed, complete post-processing.
duke@435 2300
duke@435 2301 // Compute earilest point this Node can go.
duke@435 2302 // CFG, Phi, pinned nodes already know their controlling input.
duke@435 2303 if (!has_node(n)) {
duke@435 2304 // Record earliest legal location
duke@435 2305 set_early_ctrl( n );
duke@435 2306 }
duke@435 2307 if (nstack.is_empty()) {
duke@435 2308 // Finished all nodes on stack.
duke@435 2309 // Process next node on the worklist.
duke@435 2310 break;
duke@435 2311 }
duke@435 2312 // Get saved parent node and next input's index.
duke@435 2313 nstack_top_n = nstack.node();
duke@435 2314 nstack_top_i = nstack.index();
duke@435 2315 nstack.pop();
duke@435 2316 }
duke@435 2317 } // while (true)
duke@435 2318 }
duke@435 2319 }
duke@435 2320
duke@435 2321 //------------------------------dom_lca_internal--------------------------------
duke@435 2322 // Pair-wise LCA
duke@435 2323 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
duke@435 2324 if( !n1 ) return n2; // Handle NULL original LCA
duke@435 2325 assert( n1->is_CFG(), "" );
duke@435 2326 assert( n2->is_CFG(), "" );
duke@435 2327 // find LCA of all uses
duke@435 2328 uint d1 = dom_depth(n1);
duke@435 2329 uint d2 = dom_depth(n2);
duke@435 2330 while (n1 != n2) {
duke@435 2331 if (d1 > d2) {
duke@435 2332 n1 = idom(n1);
duke@435 2333 d1 = dom_depth(n1);
duke@435 2334 } else if (d1 < d2) {
duke@435 2335 n2 = idom(n2);
duke@435 2336 d2 = dom_depth(n2);
duke@435 2337 } else {
duke@435 2338 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2339 // of the tree might have the same depth. These sections have
duke@435 2340 // to be searched more carefully.
duke@435 2341
duke@435 2342 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2343 Node *t1 = idom(n1);
duke@435 2344 while (dom_depth(t1) == d1) {
duke@435 2345 if (t1 == n2) return n2;
duke@435 2346 t1 = idom(t1);
duke@435 2347 }
duke@435 2348 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2349 Node *t2 = idom(n2);
duke@435 2350 while (dom_depth(t2) == d2) {
duke@435 2351 if (t2 == n1) return n1;
duke@435 2352 t2 = idom(t2);
duke@435 2353 }
duke@435 2354 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2355 n1 = t1;
duke@435 2356 n2 = t2;
duke@435 2357 d1 = dom_depth(n1);
duke@435 2358 d2 = dom_depth(n2);
duke@435 2359 }
duke@435 2360 }
duke@435 2361 return n1;
duke@435 2362 }
duke@435 2363
duke@435 2364 //------------------------------compute_idom-----------------------------------
duke@435 2365 // Locally compute IDOM using dom_lca call. Correct only if the incoming
duke@435 2366 // IDOMs are correct.
duke@435 2367 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
duke@435 2368 assert( region->is_Region(), "" );
duke@435 2369 Node *LCA = NULL;
duke@435 2370 for( uint i = 1; i < region->req(); i++ ) {
duke@435 2371 if( region->in(i) != C->top() )
duke@435 2372 LCA = dom_lca( LCA, region->in(i) );
duke@435 2373 }
duke@435 2374 return LCA;
duke@435 2375 }
duke@435 2376
duke@435 2377 //------------------------------get_late_ctrl----------------------------------
duke@435 2378 // Compute latest legal control.
duke@435 2379 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
duke@435 2380 assert(early != NULL, "early control should not be NULL");
duke@435 2381
duke@435 2382 // Compute LCA over list of uses
duke@435 2383 Node *LCA = NULL;
duke@435 2384 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
duke@435 2385 Node* c = n->fast_out(i);
duke@435 2386 if (_nodes[c->_idx] == NULL)
duke@435 2387 continue; // Skip the occasional dead node
duke@435 2388 if( c->is_Phi() ) { // For Phis, we must land above on the path
duke@435 2389 for( uint j=1; j<c->req(); j++ ) {// For all inputs
duke@435 2390 if( c->in(j) == n ) { // Found matching input?
duke@435 2391 Node *use = c->in(0)->in(j);
duke@435 2392 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
duke@435 2393 }
duke@435 2394 }
duke@435 2395 } else {
duke@435 2396 // For CFG data-users, use is in the block just prior
duke@435 2397 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
duke@435 2398 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
duke@435 2399 }
duke@435 2400 }
duke@435 2401
duke@435 2402 // if this is a load, check for anti-dependent stores
duke@435 2403 // We use a conservative algorithm to identify potential interfering
duke@435 2404 // instructions and for rescheduling the load. The users of the memory
duke@435 2405 // input of this load are examined. Any use which is not a load and is
duke@435 2406 // dominated by early is considered a potentially interfering store.
duke@435 2407 // This can produce false positives.
duke@435 2408 if (n->is_Load() && LCA != early) {
duke@435 2409 Node_List worklist;
duke@435 2410
duke@435 2411 Node *mem = n->in(MemNode::Memory);
duke@435 2412 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 2413 Node* s = mem->fast_out(i);
duke@435 2414 worklist.push(s);
duke@435 2415 }
duke@435 2416 while(worklist.size() != 0 && LCA != early) {
duke@435 2417 Node* s = worklist.pop();
duke@435 2418 if (s->is_Load()) {
duke@435 2419 continue;
duke@435 2420 } else if (s->is_MergeMem()) {
duke@435 2421 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
duke@435 2422 Node* s1 = s->fast_out(i);
duke@435 2423 worklist.push(s1);
duke@435 2424 }
duke@435 2425 } else {
duke@435 2426 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
duke@435 2427 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
duke@435 2428 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
duke@435 2429 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
duke@435 2430 }
duke@435 2431 }
duke@435 2432 }
duke@435 2433 }
duke@435 2434
duke@435 2435 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
duke@435 2436 return LCA;
duke@435 2437 }
duke@435 2438
duke@435 2439 // true if CFG node d dominates CFG node n
duke@435 2440 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
duke@435 2441 if (d == n)
duke@435 2442 return true;
duke@435 2443 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
duke@435 2444 uint dd = dom_depth(d);
duke@435 2445 while (dom_depth(n) >= dd) {
duke@435 2446 if (n == d)
duke@435 2447 return true;
duke@435 2448 n = idom(n);
duke@435 2449 }
duke@435 2450 return false;
duke@435 2451 }
duke@435 2452
duke@435 2453 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
duke@435 2454 // Pair-wise LCA with tags.
duke@435 2455 // Tag each index with the node 'tag' currently being processed
duke@435 2456 // before advancing up the dominator chain using idom().
duke@435 2457 // Later calls that find a match to 'tag' know that this path has already
duke@435 2458 // been considered in the current LCA (which is input 'n1' by convention).
duke@435 2459 // Since get_late_ctrl() is only called once for each node, the tag array
duke@435 2460 // does not need to be cleared between calls to get_late_ctrl().
duke@435 2461 // Algorithm trades a larger constant factor for better asymptotic behavior
duke@435 2462 //
duke@435 2463 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
duke@435 2464 uint d1 = dom_depth(n1);
duke@435 2465 uint d2 = dom_depth(n2);
duke@435 2466
duke@435 2467 do {
duke@435 2468 if (d1 > d2) {
duke@435 2469 // current lca is deeper than n2
duke@435 2470 _dom_lca_tags.map(n1->_idx, tag);
duke@435 2471 n1 = idom(n1);
duke@435 2472 d1 = dom_depth(n1);
duke@435 2473 } else if (d1 < d2) {
duke@435 2474 // n2 is deeper than current lca
duke@435 2475 Node *memo = _dom_lca_tags[n2->_idx];
duke@435 2476 if( memo == tag ) {
duke@435 2477 return n1; // Return the current LCA
duke@435 2478 }
duke@435 2479 _dom_lca_tags.map(n2->_idx, tag);
duke@435 2480 n2 = idom(n2);
duke@435 2481 d2 = dom_depth(n2);
duke@435 2482 } else {
duke@435 2483 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2484 // of the tree might have the same depth. These sections have
duke@435 2485 // to be searched more carefully.
duke@435 2486
duke@435 2487 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2488 _dom_lca_tags.map(n1->_idx, tag);
duke@435 2489 Node *t1 = idom(n1);
duke@435 2490 while (dom_depth(t1) == d1) {
duke@435 2491 if (t1 == n2) return n2;
duke@435 2492 _dom_lca_tags.map(t1->_idx, tag);
duke@435 2493 t1 = idom(t1);
duke@435 2494 }
duke@435 2495 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2496 _dom_lca_tags.map(n2->_idx, tag);
duke@435 2497 Node *t2 = idom(n2);
duke@435 2498 while (dom_depth(t2) == d2) {
duke@435 2499 if (t2 == n1) return n1;
duke@435 2500 _dom_lca_tags.map(t2->_idx, tag);
duke@435 2501 t2 = idom(t2);
duke@435 2502 }
duke@435 2503 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2504 n1 = t1;
duke@435 2505 n2 = t2;
duke@435 2506 d1 = dom_depth(n1);
duke@435 2507 d2 = dom_depth(n2);
duke@435 2508 }
duke@435 2509 } while (n1 != n2);
duke@435 2510 return n1;
duke@435 2511 }
duke@435 2512
duke@435 2513 //------------------------------init_dom_lca_tags------------------------------
duke@435 2514 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 2515 // Intended use does not involve any growth for the array, so it could
duke@435 2516 // be of fixed size.
duke@435 2517 void PhaseIdealLoop::init_dom_lca_tags() {
duke@435 2518 uint limit = C->unique() + 1;
duke@435 2519 _dom_lca_tags.map( limit, NULL );
duke@435 2520 #ifdef ASSERT
duke@435 2521 for( uint i = 0; i < limit; ++i ) {
duke@435 2522 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 2523 }
duke@435 2524 #endif // ASSERT
duke@435 2525 }
duke@435 2526
duke@435 2527 //------------------------------clear_dom_lca_tags------------------------------
duke@435 2528 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 2529 // Intended use does not involve any growth for the array, so it could
duke@435 2530 // be of fixed size.
duke@435 2531 void PhaseIdealLoop::clear_dom_lca_tags() {
duke@435 2532 uint limit = C->unique() + 1;
duke@435 2533 _dom_lca_tags.map( limit, NULL );
duke@435 2534 _dom_lca_tags.clear();
duke@435 2535 #ifdef ASSERT
duke@435 2536 for( uint i = 0; i < limit; ++i ) {
duke@435 2537 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 2538 }
duke@435 2539 #endif // ASSERT
duke@435 2540 }
duke@435 2541
duke@435 2542 //------------------------------build_loop_late--------------------------------
duke@435 2543 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2544 // Second pass finds latest legal placement, and ideal loop placement.
duke@435 2545 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
duke@435 2546 while (worklist.size() != 0) {
duke@435 2547 Node *n = worklist.pop();
duke@435 2548 // Only visit once
duke@435 2549 if (visited.test_set(n->_idx)) continue;
duke@435 2550 uint cnt = n->outcnt();
duke@435 2551 uint i = 0;
duke@435 2552 while (true) {
duke@435 2553 assert( _nodes[n->_idx], "no dead nodes" );
duke@435 2554 // Visit all children
duke@435 2555 if (i < cnt) {
duke@435 2556 Node* use = n->raw_out(i);
duke@435 2557 ++i;
duke@435 2558 // Check for dead uses. Aggressively prune such junk. It might be
duke@435 2559 // dead in the global sense, but still have local uses so I cannot
duke@435 2560 // easily call 'remove_dead_node'.
duke@435 2561 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
duke@435 2562 // Due to cycles, we might not hit the same fixed point in the verify
duke@435 2563 // pass as we do in the regular pass. Instead, visit such phis as
duke@435 2564 // simple uses of the loop head.
duke@435 2565 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
duke@435 2566 if( !visited.test(use->_idx) )
duke@435 2567 worklist.push(use);
duke@435 2568 } else if( !visited.test_set(use->_idx) ) {
duke@435 2569 nstack.push(n, i); // Save parent and next use's index.
duke@435 2570 n = use; // Process all children of current use.
duke@435 2571 cnt = use->outcnt();
duke@435 2572 i = 0;
duke@435 2573 }
duke@435 2574 } else {
duke@435 2575 // Do not visit around the backedge of loops via data edges.
duke@435 2576 // push dead code onto a worklist
duke@435 2577 _deadlist.push(use);
duke@435 2578 }
duke@435 2579 } else {
duke@435 2580 // All of n's children have been processed, complete post-processing.
duke@435 2581 build_loop_late_post(n, verify_me);
duke@435 2582 if (nstack.is_empty()) {
duke@435 2583 // Finished all nodes on stack.
duke@435 2584 // Process next node on the worklist.
duke@435 2585 break;
duke@435 2586 }
duke@435 2587 // Get saved parent node and next use's index. Visit the rest of uses.
duke@435 2588 n = nstack.node();
duke@435 2589 cnt = n->outcnt();
duke@435 2590 i = nstack.index();
duke@435 2591 nstack.pop();
duke@435 2592 }
duke@435 2593 }
duke@435 2594 }
duke@435 2595 }
duke@435 2596
duke@435 2597 //------------------------------build_loop_late_post---------------------------
duke@435 2598 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2599 // Second pass finds latest legal placement, and ideal loop placement.
duke@435 2600 void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) {
duke@435 2601
duke@435 2602 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) {
duke@435 2603 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
duke@435 2604 }
duke@435 2605
duke@435 2606 // CFG and pinned nodes already handled
duke@435 2607 if( n->in(0) ) {
duke@435 2608 if( n->in(0)->is_top() ) return; // Dead?
duke@435 2609
duke@435 2610 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
duke@435 2611 // _must_ be pinned (they have to observe their control edge of course).
duke@435 2612 // Unlike Stores (which modify an unallocable resource, the memory
duke@435 2613 // state), Mods/Loads can float around. So free them up.
duke@435 2614 bool pinned = true;
duke@435 2615 switch( n->Opcode() ) {
duke@435 2616 case Op_DivI:
duke@435 2617 case Op_DivF:
duke@435 2618 case Op_DivD:
duke@435 2619 case Op_ModI:
duke@435 2620 case Op_ModF:
duke@435 2621 case Op_ModD:
duke@435 2622 case Op_LoadB: // Same with Loads; they can sink
duke@435 2623 case Op_LoadC: // during loop optimizations.
duke@435 2624 case Op_LoadD:
duke@435 2625 case Op_LoadF:
duke@435 2626 case Op_LoadI:
duke@435 2627 case Op_LoadKlass:
duke@435 2628 case Op_LoadL:
duke@435 2629 case Op_LoadS:
duke@435 2630 case Op_LoadP:
duke@435 2631 case Op_LoadRange:
duke@435 2632 case Op_LoadD_unaligned:
duke@435 2633 case Op_LoadL_unaligned:
duke@435 2634 case Op_StrComp: // Does a bunch of load-like effects
rasbold@604 2635 case Op_AryEq:
duke@435 2636 pinned = false;
duke@435 2637 }
duke@435 2638 if( pinned ) {
duke@435 2639 IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
duke@435 2640 if( !choosen_loop->_child ) // Inner loop?
duke@435 2641 choosen_loop->_body.push(n); // Collect inner loops
duke@435 2642 return;
duke@435 2643 }
duke@435 2644 } else { // No slot zero
duke@435 2645 if( n->is_CFG() ) { // CFG with no slot 0 is dead
duke@435 2646 _nodes.map(n->_idx,0); // No block setting, it's globally dead
duke@435 2647 return;
duke@435 2648 }
duke@435 2649 assert(!n->is_CFG() || n->outcnt() == 0, "");
duke@435 2650 }
duke@435 2651
duke@435 2652 // Do I have a "safe range" I can select over?
duke@435 2653 Node *early = get_ctrl(n);// Early location already computed
duke@435 2654
duke@435 2655 // Compute latest point this Node can go
duke@435 2656 Node *LCA = get_late_ctrl( n, early );
duke@435 2657 // LCA is NULL due to uses being dead
duke@435 2658 if( LCA == NULL ) {
duke@435 2659 #ifdef ASSERT
duke@435 2660 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
duke@435 2661 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
duke@435 2662 }
duke@435 2663 #endif
duke@435 2664 _nodes.map(n->_idx, 0); // This node is useless
duke@435 2665 _deadlist.push(n);
duke@435 2666 return;
duke@435 2667 }
duke@435 2668 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
duke@435 2669
duke@435 2670 Node *legal = LCA; // Walk 'legal' up the IDOM chain
duke@435 2671 Node *least = legal; // Best legal position so far
duke@435 2672 while( early != legal ) { // While not at earliest legal
duke@435 2673 // Find least loop nesting depth
duke@435 2674 legal = idom(legal); // Bump up the IDOM tree
duke@435 2675 // Check for lower nesting depth
duke@435 2676 if( get_loop(legal)->_nest < get_loop(least)->_nest )
duke@435 2677 least = legal;
duke@435 2678 }
duke@435 2679
duke@435 2680 // Try not to place code on a loop entry projection
duke@435 2681 // which can inhibit range check elimination.
duke@435 2682 if (least != early) {
duke@435 2683 Node* ctrl_out = least->unique_ctrl_out();
duke@435 2684 if (ctrl_out && ctrl_out->is_CountedLoop() &&
duke@435 2685 least == ctrl_out->in(LoopNode::EntryControl)) {
duke@435 2686 Node* least_dom = idom(least);
duke@435 2687 if (get_loop(least_dom)->is_member(get_loop(least))) {
duke@435 2688 least = least_dom;
duke@435 2689 }
duke@435 2690 }
duke@435 2691 }
duke@435 2692
duke@435 2693 #ifdef ASSERT
duke@435 2694 // If verifying, verify that 'verify_me' has a legal location
duke@435 2695 // and choose it as our location.
duke@435 2696 if( verify_me ) {
duke@435 2697 Node *v_ctrl = verify_me->get_ctrl_no_update(n);
duke@435 2698 Node *legal = LCA;
duke@435 2699 while( early != legal ) { // While not at earliest legal
duke@435 2700 if( legal == v_ctrl ) break; // Check for prior good location
duke@435 2701 legal = idom(legal) ;// Bump up the IDOM tree
duke@435 2702 }
duke@435 2703 // Check for prior good location
duke@435 2704 if( legal == v_ctrl ) least = legal; // Keep prior if found
duke@435 2705 }
duke@435 2706 #endif
duke@435 2707
duke@435 2708 // Assign discovered "here or above" point
duke@435 2709 least = find_non_split_ctrl(least);
duke@435 2710 set_ctrl(n, least);
duke@435 2711
duke@435 2712 // Collect inner loop bodies
duke@435 2713 IdealLoopTree *choosen_loop = get_loop(least);
duke@435 2714 if( !choosen_loop->_child ) // Inner loop?
duke@435 2715 choosen_loop->_body.push(n);// Collect inner loops
duke@435 2716 }
duke@435 2717
duke@435 2718 #ifndef PRODUCT
duke@435 2719 //------------------------------dump-------------------------------------------
duke@435 2720 void PhaseIdealLoop::dump( ) const {
duke@435 2721 ResourceMark rm;
duke@435 2722 Arena* arena = Thread::current()->resource_area();
duke@435 2723 Node_Stack stack(arena, C->unique() >> 2);
duke@435 2724 Node_List rpo_list;
duke@435 2725 VectorSet visited(arena);
duke@435 2726 visited.set(C->top()->_idx);
duke@435 2727 rpo( C->root(), stack, visited, rpo_list );
duke@435 2728 // Dump root loop indexed by last element in PO order
duke@435 2729 dump( _ltree_root, rpo_list.size(), rpo_list );
duke@435 2730 }
duke@435 2731
duke@435 2732 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
duke@435 2733
duke@435 2734 // Indent by loop nesting depth
duke@435 2735 for( uint x = 0; x < loop->_nest; x++ )
duke@435 2736 tty->print(" ");
duke@435 2737 tty->print_cr("---- Loop N%d-N%d ----", loop->_head->_idx,loop->_tail->_idx);
duke@435 2738
duke@435 2739 // Now scan for CFG nodes in the same loop
duke@435 2740 for( uint j=idx; j > 0; j-- ) {
duke@435 2741 Node *n = rpo_list[j-1];
duke@435 2742 if( !_nodes[n->_idx] ) // Skip dead nodes
duke@435 2743 continue;
duke@435 2744 if( get_loop(n) != loop ) { // Wrong loop nest
duke@435 2745 if( get_loop(n)->_head == n && // Found nested loop?
duke@435 2746 get_loop(n)->_parent == loop )
duke@435 2747 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
duke@435 2748 continue;
duke@435 2749 }
duke@435 2750
duke@435 2751 // Dump controlling node
duke@435 2752 for( uint x = 0; x < loop->_nest; x++ )
duke@435 2753 tty->print(" ");
duke@435 2754 tty->print("C");
duke@435 2755 if( n == C->root() ) {
duke@435 2756 n->dump();
duke@435 2757 } else {
duke@435 2758 Node* cached_idom = idom_no_update(n);
duke@435 2759 Node *computed_idom = n->in(0);
duke@435 2760 if( n->is_Region() ) {
duke@435 2761 computed_idom = compute_idom(n);
duke@435 2762 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
duke@435 2763 // any MultiBranch ctrl node), so apply a similar transform to
duke@435 2764 // the cached idom returned from idom_no_update.
duke@435 2765 cached_idom = find_non_split_ctrl(cached_idom);
duke@435 2766 }
duke@435 2767 tty->print(" ID:%d",computed_idom->_idx);
duke@435 2768 n->dump();
duke@435 2769 if( cached_idom != computed_idom ) {
duke@435 2770 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
duke@435 2771 computed_idom->_idx, cached_idom->_idx);
duke@435 2772 }
duke@435 2773 }
duke@435 2774 // Dump nodes it controls
duke@435 2775 for( uint k = 0; k < _nodes.Size(); k++ ) {
duke@435 2776 // (k < C->unique() && get_ctrl(find(k)) == n)
duke@435 2777 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
duke@435 2778 Node *m = C->root()->find(k);
duke@435 2779 if( m && m->outcnt() > 0 ) {
duke@435 2780 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
duke@435 2781 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
duke@435 2782 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
duke@435 2783 }
duke@435 2784 for( uint j = 0; j < loop->_nest; j++ )
duke@435 2785 tty->print(" ");
duke@435 2786 tty->print(" ");
duke@435 2787 m->dump();
duke@435 2788 }
duke@435 2789 }
duke@435 2790 }
duke@435 2791 }
duke@435 2792 }
duke@435 2793
duke@435 2794 // Collect a R-P-O for the whole CFG.
duke@435 2795 // Result list is in post-order (scan backwards for RPO)
duke@435 2796 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
duke@435 2797 stk.push(start, 0);
duke@435 2798 visited.set(start->_idx);
duke@435 2799
duke@435 2800 while (stk.is_nonempty()) {
duke@435 2801 Node* m = stk.node();
duke@435 2802 uint idx = stk.index();
duke@435 2803 if (idx < m->outcnt()) {
duke@435 2804 stk.set_index(idx + 1);
duke@435 2805 Node* n = m->raw_out(idx);
duke@435 2806 if (n->is_CFG() && !visited.test_set(n->_idx)) {
duke@435 2807 stk.push(n, 0);
duke@435 2808 }
duke@435 2809 } else {
duke@435 2810 rpo_list.push(m);
duke@435 2811 stk.pop();
duke@435 2812 }
duke@435 2813 }
duke@435 2814 }
duke@435 2815 #endif
duke@435 2816
duke@435 2817
duke@435 2818 //=============================================================================
duke@435 2819 //------------------------------LoopTreeIterator-----------------------------------
duke@435 2820
duke@435 2821 // Advance to next loop tree using a preorder, left-to-right traversal.
duke@435 2822 void LoopTreeIterator::next() {
duke@435 2823 assert(!done(), "must not be done.");
duke@435 2824 if (_curnt->_child != NULL) {
duke@435 2825 _curnt = _curnt->_child;
duke@435 2826 } else if (_curnt->_next != NULL) {
duke@435 2827 _curnt = _curnt->_next;
duke@435 2828 } else {
duke@435 2829 while (_curnt != _root && _curnt->_next == NULL) {
duke@435 2830 _curnt = _curnt->_parent;
duke@435 2831 }
duke@435 2832 if (_curnt == _root) {
duke@435 2833 _curnt = NULL;
duke@435 2834 assert(done(), "must be done.");
duke@435 2835 } else {
duke@435 2836 assert(_curnt->_next != NULL, "must be more to do");
duke@435 2837 _curnt = _curnt->_next;
duke@435 2838 }
duke@435 2839 }
duke@435 2840 }

mercurial