src/share/vm/gc_implementation/parallelScavenge/psYoungGen.cpp

Fri, 17 May 2013 11:57:05 +0200

author
ehelin
date
Fri, 17 May 2013 11:57:05 +0200
changeset 5159
001ec9515f84
parent 4391
0b54ffe4c2d3
child 6085
8f07aa079343
permissions
-rw-r--r--

8014277: Remove ObjectClosure as base class for BoolObjectClosure
Reviewed-by: brutisso, tschatzl

duke@435 1 /*
brutisso@3711 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 30 #include "gc_implementation/shared/gcUtil.hpp"
stefank@2314 31 #include "gc_implementation/shared/mutableNUMASpace.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "runtime/java.hpp"
duke@435 35
duke@435 36 PSYoungGen::PSYoungGen(size_t initial_size,
duke@435 37 size_t min_size,
duke@435 38 size_t max_size) :
duke@435 39 _init_gen_size(initial_size),
duke@435 40 _min_gen_size(min_size),
duke@435 41 _max_gen_size(max_size)
duke@435 42 {}
duke@435 43
duke@435 44 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
duke@435 45 assert(_init_gen_size != 0, "Should have a finite size");
duke@435 46 _virtual_space = new PSVirtualSpace(rs, alignment);
jmasa@698 47 if (!virtual_space()->expand_by(_init_gen_size)) {
duke@435 48 vm_exit_during_initialization("Could not reserve enough space for "
duke@435 49 "object heap");
duke@435 50 }
duke@435 51 }
duke@435 52
duke@435 53 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
duke@435 54 initialize_virtual_space(rs, alignment);
duke@435 55 initialize_work();
duke@435 56 }
duke@435 57
duke@435 58 void PSYoungGen::initialize_work() {
duke@435 59
jmasa@698 60 _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
jmasa@698 61 (HeapWord*)virtual_space()->high_boundary());
duke@435 62
jmasa@698 63 MemRegion cmr((HeapWord*)virtual_space()->low(),
jmasa@698 64 (HeapWord*)virtual_space()->high());
duke@435 65 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 66
jmasa@698 67 if (ZapUnusedHeapArea) {
jmasa@698 68 // Mangle newly committed space immediately because it
jmasa@698 69 // can be done here more simply that after the new
jmasa@698 70 // spaces have been computed.
jmasa@698 71 SpaceMangler::mangle_region(cmr);
jmasa@698 72 }
jmasa@698 73
duke@435 74 if (UseNUMA) {
iveresov@970 75 _eden_space = new MutableNUMASpace(virtual_space()->alignment());
duke@435 76 } else {
iveresov@970 77 _eden_space = new MutableSpace(virtual_space()->alignment());
duke@435 78 }
iveresov@970 79 _from_space = new MutableSpace(virtual_space()->alignment());
iveresov@970 80 _to_space = new MutableSpace(virtual_space()->alignment());
duke@435 81
duke@435 82 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
duke@435 83 vm_exit_during_initialization("Could not allocate a young gen space");
duke@435 84 }
duke@435 85
duke@435 86 // Allocate the mark sweep views of spaces
duke@435 87 _eden_mark_sweep =
duke@435 88 new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
duke@435 89 _from_mark_sweep =
duke@435 90 new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
duke@435 91 _to_mark_sweep =
duke@435 92 new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
duke@435 93
duke@435 94 if (_eden_mark_sweep == NULL ||
duke@435 95 _from_mark_sweep == NULL ||
duke@435 96 _to_mark_sweep == NULL) {
duke@435 97 vm_exit_during_initialization("Could not complete allocation"
duke@435 98 " of the young generation");
duke@435 99 }
duke@435 100
duke@435 101 // Generation Counters - generation 0, 3 subspaces
duke@435 102 _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
duke@435 103
duke@435 104 // Compute maximum space sizes for performance counters
duke@435 105 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jmasa@448 106 size_t alignment = heap->intra_heap_alignment();
jmasa@698 107 size_t size = virtual_space()->reserved_size();
duke@435 108
duke@435 109 size_t max_survivor_size;
duke@435 110 size_t max_eden_size;
duke@435 111
duke@435 112 if (UseAdaptiveSizePolicy) {
duke@435 113 max_survivor_size = size / MinSurvivorRatio;
duke@435 114
duke@435 115 // round the survivor space size down to the nearest alignment
duke@435 116 // and make sure its size is greater than 0.
duke@435 117 max_survivor_size = align_size_down(max_survivor_size, alignment);
duke@435 118 max_survivor_size = MAX2(max_survivor_size, alignment);
duke@435 119
duke@435 120 // set the maximum size of eden to be the size of the young gen
duke@435 121 // less two times the minimum survivor size. The minimum survivor
duke@435 122 // size for UseAdaptiveSizePolicy is one alignment.
duke@435 123 max_eden_size = size - 2 * alignment;
duke@435 124 } else {
duke@435 125 max_survivor_size = size / InitialSurvivorRatio;
duke@435 126
duke@435 127 // round the survivor space size down to the nearest alignment
duke@435 128 // and make sure its size is greater than 0.
duke@435 129 max_survivor_size = align_size_down(max_survivor_size, alignment);
duke@435 130 max_survivor_size = MAX2(max_survivor_size, alignment);
duke@435 131
duke@435 132 // set the maximum size of eden to be the size of the young gen
duke@435 133 // less two times the survivor size when the generation is 100%
duke@435 134 // committed. The minimum survivor size for -UseAdaptiveSizePolicy
duke@435 135 // is dependent on the committed portion (current capacity) of the
duke@435 136 // generation - the less space committed, the smaller the survivor
duke@435 137 // space, possibly as small as an alignment. However, we are interested
duke@435 138 // in the case where the young generation is 100% committed, as this
duke@435 139 // is the point where eden reachs its maximum size. At this point,
duke@435 140 // the size of a survivor space is max_survivor_size.
duke@435 141 max_eden_size = size - 2 * max_survivor_size;
duke@435 142 }
duke@435 143
duke@435 144 _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
duke@435 145 _gen_counters);
duke@435 146 _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
duke@435 147 _gen_counters);
duke@435 148 _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
duke@435 149 _gen_counters);
duke@435 150
duke@435 151 compute_initial_space_boundaries();
duke@435 152 }
duke@435 153
duke@435 154 void PSYoungGen::compute_initial_space_boundaries() {
duke@435 155 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 156 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 157
duke@435 158 // Compute sizes
jmasa@448 159 size_t alignment = heap->intra_heap_alignment();
jmasa@698 160 size_t size = virtual_space()->committed_size();
duke@435 161
duke@435 162 size_t survivor_size = size / InitialSurvivorRatio;
duke@435 163 survivor_size = align_size_down(survivor_size, alignment);
duke@435 164 // ... but never less than an alignment
duke@435 165 survivor_size = MAX2(survivor_size, alignment);
duke@435 166
duke@435 167 // Young generation is eden + 2 survivor spaces
duke@435 168 size_t eden_size = size - (2 * survivor_size);
duke@435 169
duke@435 170 // Now go ahead and set 'em.
duke@435 171 set_space_boundaries(eden_size, survivor_size);
duke@435 172 space_invariants();
duke@435 173
duke@435 174 if (UsePerfData) {
duke@435 175 _eden_counters->update_capacity();
duke@435 176 _from_counters->update_capacity();
duke@435 177 _to_counters->update_capacity();
duke@435 178 }
duke@435 179 }
duke@435 180
duke@435 181 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
jmasa@698 182 assert(eden_size < virtual_space()->committed_size(), "just checking");
duke@435 183 assert(eden_size > 0 && survivor_size > 0, "just checking");
duke@435 184
duke@435 185 // Initial layout is Eden, to, from. After swapping survivor spaces,
duke@435 186 // that leaves us with Eden, from, to, which is step one in our two
duke@435 187 // step resize-with-live-data procedure.
jmasa@698 188 char *eden_start = virtual_space()->low();
duke@435 189 char *to_start = eden_start + eden_size;
duke@435 190 char *from_start = to_start + survivor_size;
duke@435 191 char *from_end = from_start + survivor_size;
duke@435 192
jmasa@698 193 assert(from_end == virtual_space()->high(), "just checking");
duke@435 194 assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
duke@435 195 assert(is_object_aligned((intptr_t)to_start), "checking alignment");
duke@435 196 assert(is_object_aligned((intptr_t)from_start), "checking alignment");
duke@435 197
duke@435 198 MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
duke@435 199 MemRegion to_mr ((HeapWord*)to_start, (HeapWord*)from_start);
duke@435 200 MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
duke@435 201
jmasa@698 202 eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
jmasa@698 203 to_space()->initialize(to_mr , true, ZapUnusedHeapArea);
jmasa@698 204 from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
duke@435 205 }
duke@435 206
duke@435 207 #ifndef PRODUCT
duke@435 208 void PSYoungGen::space_invariants() {
duke@435 209 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jmasa@448 210 const size_t alignment = heap->intra_heap_alignment();
duke@435 211
duke@435 212 // Currently, our eden size cannot shrink to zero
duke@435 213 guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
duke@435 214 guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
duke@435 215 guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
duke@435 216
duke@435 217 // Relationship of spaces to each other
duke@435 218 char* eden_start = (char*)eden_space()->bottom();
duke@435 219 char* eden_end = (char*)eden_space()->end();
duke@435 220 char* from_start = (char*)from_space()->bottom();
duke@435 221 char* from_end = (char*)from_space()->end();
duke@435 222 char* to_start = (char*)to_space()->bottom();
duke@435 223 char* to_end = (char*)to_space()->end();
duke@435 224
jmasa@698 225 guarantee(eden_start >= virtual_space()->low(), "eden bottom");
duke@435 226 guarantee(eden_start < eden_end, "eden space consistency");
duke@435 227 guarantee(from_start < from_end, "from space consistency");
duke@435 228 guarantee(to_start < to_end, "to space consistency");
duke@435 229
duke@435 230 // Check whether from space is below to space
duke@435 231 if (from_start < to_start) {
duke@435 232 // Eden, from, to
duke@435 233 guarantee(eden_end <= from_start, "eden/from boundary");
duke@435 234 guarantee(from_end <= to_start, "from/to boundary");
jmasa@698 235 guarantee(to_end <= virtual_space()->high(), "to end");
duke@435 236 } else {
duke@435 237 // Eden, to, from
duke@435 238 guarantee(eden_end <= to_start, "eden/to boundary");
duke@435 239 guarantee(to_end <= from_start, "to/from boundary");
jmasa@698 240 guarantee(from_end <= virtual_space()->high(), "from end");
duke@435 241 }
duke@435 242
duke@435 243 // More checks that the virtual space is consistent with the spaces
jmasa@698 244 assert(virtual_space()->committed_size() >=
duke@435 245 (eden_space()->capacity_in_bytes() +
duke@435 246 to_space()->capacity_in_bytes() +
duke@435 247 from_space()->capacity_in_bytes()), "Committed size is inconsistent");
jmasa@698 248 assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
duke@435 249 "Space invariant");
duke@435 250 char* eden_top = (char*)eden_space()->top();
duke@435 251 char* from_top = (char*)from_space()->top();
duke@435 252 char* to_top = (char*)to_space()->top();
jmasa@698 253 assert(eden_top <= virtual_space()->high(), "eden top");
jmasa@698 254 assert(from_top <= virtual_space()->high(), "from top");
jmasa@698 255 assert(to_top <= virtual_space()->high(), "to top");
duke@435 256
jmasa@698 257 virtual_space()->verify();
duke@435 258 }
duke@435 259 #endif
duke@435 260
duke@435 261 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
duke@435 262 // Resize the generation if needed. If the generation resize
duke@435 263 // reports false, do not attempt to resize the spaces.
duke@435 264 if (resize_generation(eden_size, survivor_size)) {
duke@435 265 // Then we lay out the spaces inside the generation
duke@435 266 resize_spaces(eden_size, survivor_size);
duke@435 267
duke@435 268 space_invariants();
duke@435 269
duke@435 270 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 271 gclog_or_tty->print_cr("Young generation size: "
duke@435 272 "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
duke@435 273 " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
duke@435 274 " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
duke@435 275 eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
duke@435 276 _max_gen_size, min_gen_size());
duke@435 277 }
duke@435 278 }
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
jmasa@698 283 const size_t alignment = virtual_space()->alignment();
jmasa@698 284 size_t orig_size = virtual_space()->committed_size();
duke@435 285 bool size_changed = false;
duke@435 286
duke@435 287 // There used to be this guarantee there.
duke@435 288 // guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments");
duke@435 289 // Code below forces this requirement. In addition the desired eden
duke@435 290 // size and disired survivor sizes are desired goals and may
duke@435 291 // exceed the total generation size.
duke@435 292
duke@435 293 assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
duke@435 294
duke@435 295 // Adjust new generation size
duke@435 296 const size_t eden_plus_survivors =
duke@435 297 align_size_up(eden_size + 2 * survivor_size, alignment);
duke@435 298 size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
duke@435 299 min_gen_size());
duke@435 300 assert(desired_size <= max_size(), "just checking");
duke@435 301
duke@435 302 if (desired_size > orig_size) {
duke@435 303 // Grow the generation
duke@435 304 size_t change = desired_size - orig_size;
duke@435 305 assert(change % alignment == 0, "just checking");
jmasa@698 306 HeapWord* prev_high = (HeapWord*) virtual_space()->high();
jmasa@698 307 if (!virtual_space()->expand_by(change)) {
duke@435 308 return false; // Error if we fail to resize!
duke@435 309 }
jmasa@698 310 if (ZapUnusedHeapArea) {
jmasa@698 311 // Mangle newly committed space immediately because it
jmasa@698 312 // can be done here more simply that after the new
jmasa@698 313 // spaces have been computed.
jmasa@698 314 HeapWord* new_high = (HeapWord*) virtual_space()->high();
jmasa@698 315 MemRegion mangle_region(prev_high, new_high);
jmasa@698 316 SpaceMangler::mangle_region(mangle_region);
jmasa@698 317 }
duke@435 318 size_changed = true;
duke@435 319 } else if (desired_size < orig_size) {
duke@435 320 size_t desired_change = orig_size - desired_size;
duke@435 321 assert(desired_change % alignment == 0, "just checking");
duke@435 322
duke@435 323 desired_change = limit_gen_shrink(desired_change);
duke@435 324
duke@435 325 if (desired_change > 0) {
duke@435 326 virtual_space()->shrink_by(desired_change);
duke@435 327 reset_survivors_after_shrink();
duke@435 328
duke@435 329 size_changed = true;
duke@435 330 }
duke@435 331 } else {
duke@435 332 if (Verbose && PrintGC) {
duke@435 333 if (orig_size == gen_size_limit()) {
duke@435 334 gclog_or_tty->print_cr("PSYoung generation size at maximum: "
duke@435 335 SIZE_FORMAT "K", orig_size/K);
duke@435 336 } else if (orig_size == min_gen_size()) {
duke@435 337 gclog_or_tty->print_cr("PSYoung generation size at minium: "
duke@435 338 SIZE_FORMAT "K", orig_size/K);
duke@435 339 }
duke@435 340 }
duke@435 341 }
duke@435 342
duke@435 343 if (size_changed) {
duke@435 344 post_resize();
duke@435 345
duke@435 346 if (Verbose && PrintGC) {
jmasa@698 347 size_t current_size = virtual_space()->committed_size();
duke@435 348 gclog_or_tty->print_cr("PSYoung generation size changed: "
duke@435 349 SIZE_FORMAT "K->" SIZE_FORMAT "K",
duke@435 350 orig_size/K, current_size/K);
duke@435 351 }
duke@435 352 }
duke@435 353
jmasa@698 354 guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
jmasa@698 355 virtual_space()->committed_size() == max_size(), "Sanity");
duke@435 356
duke@435 357 return true;
duke@435 358 }
duke@435 359
jmasa@698 360 #ifndef PRODUCT
jmasa@698 361 // In the numa case eden is not mangled so a survivor space
jmasa@698 362 // moving into a region previously occupied by a survivor
jmasa@698 363 // may find an unmangled region. Also in the PS case eden
jmasa@698 364 // to-space and from-space may not touch (i.e., there may be
jmasa@698 365 // gaps between them due to movement while resizing the
jmasa@698 366 // spaces). Those gaps must be mangled.
jmasa@698 367 void PSYoungGen::mangle_survivors(MutableSpace* s1,
jmasa@698 368 MemRegion s1MR,
jmasa@698 369 MutableSpace* s2,
jmasa@698 370 MemRegion s2MR) {
jmasa@698 371 // Check eden and gap between eden and from-space, in deciding
jmasa@698 372 // what to mangle in from-space. Check the gap between from-space
jmasa@698 373 // and to-space when deciding what to mangle.
jmasa@698 374 //
jmasa@698 375 // +--------+ +----+ +---+
jmasa@698 376 // | eden | |s1 | |s2 |
jmasa@698 377 // +--------+ +----+ +---+
jmasa@698 378 // +-------+ +-----+
jmasa@698 379 // |s1MR | |s2MR |
jmasa@698 380 // +-------+ +-----+
jmasa@698 381 // All of survivor-space is properly mangled so find the
jmasa@698 382 // upper bound on the mangling for any portion above current s1.
jmasa@698 383 HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
jmasa@698 384 MemRegion delta1_left;
jmasa@698 385 if (s1MR.start() < delta_end) {
jmasa@698 386 delta1_left = MemRegion(s1MR.start(), delta_end);
jmasa@698 387 s1->mangle_region(delta1_left);
jmasa@698 388 }
jmasa@698 389 // Find any portion to the right of the current s1.
jmasa@698 390 HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
jmasa@698 391 MemRegion delta1_right;
jmasa@698 392 if (delta_start < s1MR.end()) {
jmasa@698 393 delta1_right = MemRegion(delta_start, s1MR.end());
jmasa@698 394 s1->mangle_region(delta1_right);
jmasa@698 395 }
jmasa@698 396
jmasa@698 397 // Similarly for the second survivor space except that
jmasa@698 398 // any of the new region that overlaps with the current
jmasa@698 399 // region of the first survivor space has already been
jmasa@698 400 // mangled.
jmasa@698 401 delta_end = MIN2(s2->bottom(), s2MR.end());
jmasa@698 402 delta_start = MAX2(s2MR.start(), s1->end());
jmasa@698 403 MemRegion delta2_left;
jmasa@698 404 if (s2MR.start() < delta_end) {
jmasa@698 405 delta2_left = MemRegion(s2MR.start(), delta_end);
jmasa@698 406 s2->mangle_region(delta2_left);
jmasa@698 407 }
jmasa@698 408 delta_start = MAX2(s2->end(), s2MR.start());
jmasa@698 409 MemRegion delta2_right;
jmasa@698 410 if (delta_start < s2MR.end()) {
jmasa@698 411 s2->mangle_region(delta2_right);
jmasa@698 412 }
jmasa@698 413
jmasa@698 414 if (TraceZapUnusedHeapArea) {
jmasa@698 415 // s1
jmasa@698 416 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
jmasa@698 417 "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 418 s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
jmasa@698 419 gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", "
jmasa@698 420 PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 421 delta1_left.start(), delta1_left.end(), delta1_right.start(),
jmasa@698 422 delta1_right.end());
jmasa@698 423
jmasa@698 424 // s2
jmasa@698 425 gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
jmasa@698 426 "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 427 s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
jmasa@698 428 gclog_or_tty->print_cr(" Mangle before: [" PTR_FORMAT ", "
jmasa@698 429 PTR_FORMAT ") Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
jmasa@698 430 delta2_left.start(), delta2_left.end(), delta2_right.start(),
jmasa@698 431 delta2_right.end());
jmasa@698 432 }
jmasa@698 433
jmasa@698 434 }
jmasa@698 435 #endif // NOT PRODUCT
duke@435 436
duke@435 437 void PSYoungGen::resize_spaces(size_t requested_eden_size,
duke@435 438 size_t requested_survivor_size) {
duke@435 439 assert(UseAdaptiveSizePolicy, "sanity check");
duke@435 440 assert(requested_eden_size > 0 && requested_survivor_size > 0,
duke@435 441 "just checking");
duke@435 442
duke@435 443 // We require eden and to space to be empty
duke@435 444 if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
duke@435 445 return;
duke@435 446 }
duke@435 447
duke@435 448 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 449 gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
duke@435 450 SIZE_FORMAT
duke@435 451 ", requested_survivor_size: " SIZE_FORMAT ")",
duke@435 452 requested_eden_size, requested_survivor_size);
duke@435 453 gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 454 SIZE_FORMAT,
duke@435 455 eden_space()->bottom(),
duke@435 456 eden_space()->end(),
duke@435 457 pointer_delta(eden_space()->end(),
duke@435 458 eden_space()->bottom(),
duke@435 459 sizeof(char)));
duke@435 460 gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 461 SIZE_FORMAT,
duke@435 462 from_space()->bottom(),
duke@435 463 from_space()->end(),
duke@435 464 pointer_delta(from_space()->end(),
duke@435 465 from_space()->bottom(),
duke@435 466 sizeof(char)));
duke@435 467 gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") "
duke@435 468 SIZE_FORMAT,
duke@435 469 to_space()->bottom(),
duke@435 470 to_space()->end(),
duke@435 471 pointer_delta( to_space()->end(),
duke@435 472 to_space()->bottom(),
duke@435 473 sizeof(char)));
duke@435 474 }
duke@435 475
duke@435 476 // There's nothing to do if the new sizes are the same as the current
duke@435 477 if (requested_survivor_size == to_space()->capacity_in_bytes() &&
duke@435 478 requested_survivor_size == from_space()->capacity_in_bytes() &&
duke@435 479 requested_eden_size == eden_space()->capacity_in_bytes()) {
duke@435 480 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 481 gclog_or_tty->print_cr(" capacities are the right sizes, returning");
duke@435 482 }
duke@435 483 return;
duke@435 484 }
duke@435 485
duke@435 486 char* eden_start = (char*)eden_space()->bottom();
duke@435 487 char* eden_end = (char*)eden_space()->end();
duke@435 488 char* from_start = (char*)from_space()->bottom();
duke@435 489 char* from_end = (char*)from_space()->end();
duke@435 490 char* to_start = (char*)to_space()->bottom();
duke@435 491 char* to_end = (char*)to_space()->end();
duke@435 492
duke@435 493 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jmasa@448 494 const size_t alignment = heap->intra_heap_alignment();
duke@435 495 const bool maintain_minimum =
duke@435 496 (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
duke@435 497
jmasa@698 498 bool eden_from_to_order = from_start < to_start;
duke@435 499 // Check whether from space is below to space
jmasa@698 500 if (eden_from_to_order) {
duke@435 501 // Eden, from, to
jmasa@698 502 eden_from_to_order = true;
duke@435 503 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 504 gclog_or_tty->print_cr(" Eden, from, to:");
duke@435 505 }
duke@435 506
duke@435 507 // Set eden
duke@435 508 // "requested_eden_size" is a goal for the size of eden
duke@435 509 // and may not be attainable. "eden_size" below is
duke@435 510 // calculated based on the location of from-space and
duke@435 511 // the goal for the size of eden. from-space is
duke@435 512 // fixed in place because it contains live data.
duke@435 513 // The calculation is done this way to avoid 32bit
duke@435 514 // overflow (i.e., eden_start + requested_eden_size
duke@435 515 // may too large for representation in 32bits).
duke@435 516 size_t eden_size;
duke@435 517 if (maintain_minimum) {
duke@435 518 // Only make eden larger than the requested size if
duke@435 519 // the minimum size of the generation has to be maintained.
duke@435 520 // This could be done in general but policy at a higher
duke@435 521 // level is determining a requested size for eden and that
duke@435 522 // should be honored unless there is a fundamental reason.
duke@435 523 eden_size = pointer_delta(from_start,
duke@435 524 eden_start,
duke@435 525 sizeof(char));
duke@435 526 } else {
duke@435 527 eden_size = MIN2(requested_eden_size,
duke@435 528 pointer_delta(from_start, eden_start, sizeof(char)));
duke@435 529 }
duke@435 530
duke@435 531 eden_end = eden_start + eden_size;
jcoomes@1844 532 assert(eden_end >= eden_start, "addition overflowed");
duke@435 533
duke@435 534 // To may resize into from space as long as it is clear of live data.
duke@435 535 // From space must remain page aligned, though, so we need to do some
duke@435 536 // extra calculations.
duke@435 537
duke@435 538 // First calculate an optimal to-space
jmasa@698 539 to_end = (char*)virtual_space()->high();
duke@435 540 to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
duke@435 541 sizeof(char));
duke@435 542
duke@435 543 // Does the optimal to-space overlap from-space?
duke@435 544 if (to_start < (char*)from_space()->end()) {
duke@435 545 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 546
duke@435 547 // Calculate the minimum offset possible for from_end
duke@435 548 size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
duke@435 549
duke@435 550 // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
duke@435 551 if (from_size == 0) {
duke@435 552 from_size = alignment;
duke@435 553 } else {
duke@435 554 from_size = align_size_up(from_size, alignment);
duke@435 555 }
duke@435 556
duke@435 557 from_end = from_start + from_size;
duke@435 558 assert(from_end > from_start, "addition overflow or from_size problem");
duke@435 559
duke@435 560 guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
duke@435 561
duke@435 562 // Now update to_start with the new from_end
duke@435 563 to_start = MAX2(from_end, to_start);
duke@435 564 }
duke@435 565
duke@435 566 guarantee(to_start != to_end, "to space is zero sized");
duke@435 567
duke@435 568 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 569 gclog_or_tty->print_cr(" [eden_start .. eden_end): "
duke@435 570 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 571 eden_start,
duke@435 572 eden_end,
duke@435 573 pointer_delta(eden_end, eden_start, sizeof(char)));
duke@435 574 gclog_or_tty->print_cr(" [from_start .. from_end): "
duke@435 575 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 576 from_start,
duke@435 577 from_end,
duke@435 578 pointer_delta(from_end, from_start, sizeof(char)));
duke@435 579 gclog_or_tty->print_cr(" [ to_start .. to_end): "
duke@435 580 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 581 to_start,
duke@435 582 to_end,
duke@435 583 pointer_delta( to_end, to_start, sizeof(char)));
duke@435 584 }
duke@435 585 } else {
duke@435 586 // Eden, to, from
duke@435 587 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 588 gclog_or_tty->print_cr(" Eden, to, from:");
duke@435 589 }
duke@435 590
duke@435 591 // To space gets priority over eden resizing. Note that we position
duke@435 592 // to space as if we were able to resize from space, even though from
duke@435 593 // space is not modified.
duke@435 594 // Giving eden priority was tried and gave poorer performance.
jmasa@698 595 to_end = (char*)pointer_delta(virtual_space()->high(),
duke@435 596 (char*)requested_survivor_size,
duke@435 597 sizeof(char));
duke@435 598 to_end = MIN2(to_end, from_start);
duke@435 599 to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
duke@435 600 sizeof(char));
duke@435 601 // if the space sizes are to be increased by several times then
duke@435 602 // 'to_start' will point beyond the young generation. In this case
duke@435 603 // 'to_start' should be adjusted.
duke@435 604 to_start = MAX2(to_start, eden_start + alignment);
duke@435 605
duke@435 606 // Compute how big eden can be, then adjust end.
duke@435 607 // See comments above on calculating eden_end.
duke@435 608 size_t eden_size;
duke@435 609 if (maintain_minimum) {
duke@435 610 eden_size = pointer_delta(to_start, eden_start, sizeof(char));
duke@435 611 } else {
duke@435 612 eden_size = MIN2(requested_eden_size,
duke@435 613 pointer_delta(to_start, eden_start, sizeof(char)));
duke@435 614 }
duke@435 615 eden_end = eden_start + eden_size;
jcoomes@1844 616 assert(eden_end >= eden_start, "addition overflowed");
duke@435 617
duke@435 618 // Could choose to not let eden shrink
duke@435 619 // to_start = MAX2(to_start, eden_end);
duke@435 620
duke@435 621 // Don't let eden shrink down to 0 or less.
duke@435 622 eden_end = MAX2(eden_end, eden_start + alignment);
duke@435 623 to_start = MAX2(to_start, eden_end);
duke@435 624
duke@435 625 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 626 gclog_or_tty->print_cr(" [eden_start .. eden_end): "
duke@435 627 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 628 eden_start,
duke@435 629 eden_end,
duke@435 630 pointer_delta(eden_end, eden_start, sizeof(char)));
duke@435 631 gclog_or_tty->print_cr(" [ to_start .. to_end): "
duke@435 632 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 633 to_start,
duke@435 634 to_end,
duke@435 635 pointer_delta( to_end, to_start, sizeof(char)));
duke@435 636 gclog_or_tty->print_cr(" [from_start .. from_end): "
duke@435 637 "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
duke@435 638 from_start,
duke@435 639 from_end,
duke@435 640 pointer_delta(from_end, from_start, sizeof(char)));
duke@435 641 }
duke@435 642 }
duke@435 643
duke@435 644
duke@435 645 guarantee((HeapWord*)from_start <= from_space()->bottom(),
duke@435 646 "from start moved to the right");
duke@435 647 guarantee((HeapWord*)from_end >= from_space()->top(),
duke@435 648 "from end moved into live data");
duke@435 649 assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
duke@435 650 assert(is_object_aligned((intptr_t)from_start), "checking alignment");
duke@435 651 assert(is_object_aligned((intptr_t)to_start), "checking alignment");
duke@435 652
duke@435 653 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
duke@435 654 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 655 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
duke@435 656
duke@435 657 // Let's make sure the call to initialize doesn't reset "top"!
duke@435 658 HeapWord* old_from_top = from_space()->top();
duke@435 659
duke@435 660 // For PrintAdaptiveSizePolicy block below
duke@435 661 size_t old_from = from_space()->capacity_in_bytes();
duke@435 662 size_t old_to = to_space()->capacity_in_bytes();
duke@435 663
jmasa@698 664 if (ZapUnusedHeapArea) {
jmasa@698 665 // NUMA is a special case because a numa space is not mangled
jmasa@698 666 // in order to not prematurely bind its address to memory to
jmasa@698 667 // the wrong memory (i.e., don't want the GC thread to first
jmasa@698 668 // touch the memory). The survivor spaces are not numa
jmasa@698 669 // spaces and are mangled.
jmasa@698 670 if (UseNUMA) {
jmasa@698 671 if (eden_from_to_order) {
jmasa@698 672 mangle_survivors(from_space(), fromMR, to_space(), toMR);
jmasa@698 673 } else {
jmasa@698 674 mangle_survivors(to_space(), toMR, from_space(), fromMR);
jmasa@698 675 }
jmasa@698 676 }
jmasa@698 677
jmasa@698 678 // If not mangling the spaces, do some checking to verify that
jmasa@698 679 // the spaces are already mangled.
jmasa@698 680 // The spaces should be correctly mangled at this point so
jmasa@698 681 // do some checking here. Note that they are not being mangled
jmasa@698 682 // in the calls to initialize().
jmasa@698 683 // Must check mangling before the spaces are reshaped. Otherwise,
jmasa@698 684 // the bottom or end of one space may have moved into an area
jmasa@698 685 // covered by another space and a failure of the check may
jmasa@698 686 // not correctly indicate which space is not properly mangled.
jmasa@698 687 HeapWord* limit = (HeapWord*) virtual_space()->high();
jmasa@698 688 eden_space()->check_mangled_unused_area(limit);
jmasa@698 689 from_space()->check_mangled_unused_area(limit);
jmasa@698 690 to_space()->check_mangled_unused_area(limit);
jmasa@698 691 }
jmasa@698 692 // When an existing space is being initialized, it is not
jmasa@698 693 // mangled because the space has been previously mangled.
jmasa@698 694 eden_space()->initialize(edenMR,
jmasa@698 695 SpaceDecorator::Clear,
jmasa@698 696 SpaceDecorator::DontMangle);
jmasa@698 697 to_space()->initialize(toMR,
jmasa@698 698 SpaceDecorator::Clear,
jmasa@698 699 SpaceDecorator::DontMangle);
jmasa@698 700 from_space()->initialize(fromMR,
jmasa@698 701 SpaceDecorator::DontClear,
jmasa@698 702 SpaceDecorator::DontMangle);
duke@435 703
duke@435 704 assert(from_space()->top() == old_from_top, "from top changed!");
duke@435 705
duke@435 706 if (PrintAdaptiveSizePolicy) {
duke@435 707 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 708 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 709
duke@435 710 gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
duke@435 711 "collection: %d "
duke@435 712 "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
duke@435 713 "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
duke@435 714 heap->total_collections(),
duke@435 715 old_from, old_to,
duke@435 716 from_space()->capacity_in_bytes(),
duke@435 717 to_space()->capacity_in_bytes());
duke@435 718 gclog_or_tty->cr();
duke@435 719 }
duke@435 720 }
duke@435 721
duke@435 722 void PSYoungGen::swap_spaces() {
duke@435 723 MutableSpace* s = from_space();
duke@435 724 _from_space = to_space();
duke@435 725 _to_space = s;
duke@435 726
duke@435 727 // Now update the decorators.
duke@435 728 PSMarkSweepDecorator* md = from_mark_sweep();
duke@435 729 _from_mark_sweep = to_mark_sweep();
duke@435 730 _to_mark_sweep = md;
duke@435 731
duke@435 732 assert(from_mark_sweep()->space() == from_space(), "Sanity");
duke@435 733 assert(to_mark_sweep()->space() == to_space(), "Sanity");
duke@435 734 }
duke@435 735
duke@435 736 size_t PSYoungGen::capacity_in_bytes() const {
duke@435 737 return eden_space()->capacity_in_bytes()
duke@435 738 + from_space()->capacity_in_bytes(); // to_space() is only used during scavenge
duke@435 739 }
duke@435 740
duke@435 741
duke@435 742 size_t PSYoungGen::used_in_bytes() const {
duke@435 743 return eden_space()->used_in_bytes()
duke@435 744 + from_space()->used_in_bytes(); // to_space() is only used during scavenge
duke@435 745 }
duke@435 746
duke@435 747
duke@435 748 size_t PSYoungGen::free_in_bytes() const {
duke@435 749 return eden_space()->free_in_bytes()
duke@435 750 + from_space()->free_in_bytes(); // to_space() is only used during scavenge
duke@435 751 }
duke@435 752
duke@435 753 size_t PSYoungGen::capacity_in_words() const {
duke@435 754 return eden_space()->capacity_in_words()
duke@435 755 + from_space()->capacity_in_words(); // to_space() is only used during scavenge
duke@435 756 }
duke@435 757
duke@435 758
duke@435 759 size_t PSYoungGen::used_in_words() const {
duke@435 760 return eden_space()->used_in_words()
duke@435 761 + from_space()->used_in_words(); // to_space() is only used during scavenge
duke@435 762 }
duke@435 763
duke@435 764
duke@435 765 size_t PSYoungGen::free_in_words() const {
duke@435 766 return eden_space()->free_in_words()
duke@435 767 + from_space()->free_in_words(); // to_space() is only used during scavenge
duke@435 768 }
duke@435 769
duke@435 770 void PSYoungGen::object_iterate(ObjectClosure* blk) {
duke@435 771 eden_space()->object_iterate(blk);
duke@435 772 from_space()->object_iterate(blk);
duke@435 773 to_space()->object_iterate(blk);
duke@435 774 }
duke@435 775
duke@435 776 void PSYoungGen::precompact() {
duke@435 777 eden_mark_sweep()->precompact();
duke@435 778 from_mark_sweep()->precompact();
duke@435 779 to_mark_sweep()->precompact();
duke@435 780 }
duke@435 781
duke@435 782 void PSYoungGen::adjust_pointers() {
duke@435 783 eden_mark_sweep()->adjust_pointers();
duke@435 784 from_mark_sweep()->adjust_pointers();
duke@435 785 to_mark_sweep()->adjust_pointers();
duke@435 786 }
duke@435 787
duke@435 788 void PSYoungGen::compact() {
duke@435 789 eden_mark_sweep()->compact(ZapUnusedHeapArea);
duke@435 790 from_mark_sweep()->compact(ZapUnusedHeapArea);
duke@435 791 // Mark sweep stores preserved markOops in to space, don't disturb!
duke@435 792 to_mark_sweep()->compact(false);
duke@435 793 }
duke@435 794
duke@435 795 void PSYoungGen::print() const { print_on(tty); }
duke@435 796 void PSYoungGen::print_on(outputStream* st) const {
duke@435 797 st->print(" %-15s", "PSYoungGen");
duke@435 798 if (PrintGCDetails && Verbose) {
duke@435 799 st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
duke@435 800 capacity_in_bytes(), used_in_bytes());
duke@435 801 } else {
duke@435 802 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
duke@435 803 capacity_in_bytes()/K, used_in_bytes()/K);
duke@435 804 }
jmasa@698 805 virtual_space()->print_space_boundaries_on(st);
duke@435 806 st->print(" eden"); eden_space()->print_on(st);
duke@435 807 st->print(" from"); from_space()->print_on(st);
duke@435 808 st->print(" to "); to_space()->print_on(st);
duke@435 809 }
duke@435 810
jmasa@4391 811 // Note that a space is not printed before the [NAME:
duke@435 812 void PSYoungGen::print_used_change(size_t prev_used) const {
jmasa@4391 813 gclog_or_tty->print("[%s:", name());
duke@435 814 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 815 "->" SIZE_FORMAT "K"
duke@435 816 "(" SIZE_FORMAT "K)",
duke@435 817 prev_used / K, used_in_bytes() / K,
duke@435 818 capacity_in_bytes() / K);
duke@435 819 gclog_or_tty->print("]");
duke@435 820 }
duke@435 821
duke@435 822 size_t PSYoungGen::available_for_expansion() {
duke@435 823 ShouldNotReachHere();
duke@435 824 return 0;
duke@435 825 }
duke@435 826
duke@435 827 size_t PSYoungGen::available_for_contraction() {
duke@435 828 ShouldNotReachHere();
duke@435 829 return 0;
duke@435 830 }
duke@435 831
duke@435 832 size_t PSYoungGen::available_to_min_gen() {
duke@435 833 assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
duke@435 834 return virtual_space()->committed_size() - min_gen_size();
duke@435 835 }
duke@435 836
duke@435 837 // This method assumes that from-space has live data and that
duke@435 838 // any shrinkage of the young gen is limited by location of
duke@435 839 // from-space.
duke@435 840 size_t PSYoungGen::available_to_live() {
duke@435 841 size_t delta_in_survivor = 0;
duke@435 842 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
jmasa@448 843 const size_t space_alignment = heap->intra_heap_alignment();
duke@435 844 const size_t gen_alignment = heap->young_gen_alignment();
duke@435 845
duke@435 846 MutableSpace* space_shrinking = NULL;
duke@435 847 if (from_space()->end() > to_space()->end()) {
duke@435 848 space_shrinking = from_space();
duke@435 849 } else {
duke@435 850 space_shrinking = to_space();
duke@435 851 }
duke@435 852
duke@435 853 // Include any space that is committed but not included in
duke@435 854 // the survivor spaces.
duke@435 855 assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
duke@435 856 "Survivor space beyond high end");
duke@435 857 size_t unused_committed = pointer_delta(virtual_space()->high(),
duke@435 858 space_shrinking->end(), sizeof(char));
duke@435 859
duke@435 860 if (space_shrinking->is_empty()) {
duke@435 861 // Don't let the space shrink to 0
duke@435 862 assert(space_shrinking->capacity_in_bytes() >= space_alignment,
duke@435 863 "Space is too small");
duke@435 864 delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
duke@435 865 } else {
duke@435 866 delta_in_survivor = pointer_delta(space_shrinking->end(),
duke@435 867 space_shrinking->top(),
duke@435 868 sizeof(char));
duke@435 869 }
duke@435 870
duke@435 871 size_t delta_in_bytes = unused_committed + delta_in_survivor;
duke@435 872 delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
duke@435 873 return delta_in_bytes;
duke@435 874 }
duke@435 875
duke@435 876 // Return the number of bytes available for resizing down the young
duke@435 877 // generation. This is the minimum of
duke@435 878 // input "bytes"
duke@435 879 // bytes to the minimum young gen size
duke@435 880 // bytes to the size currently being used + some small extra
duke@435 881 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
duke@435 882 // Allow shrinkage into the current eden but keep eden large enough
duke@435 883 // to maintain the minimum young gen size
duke@435 884 bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
duke@435 885 return align_size_down(bytes, virtual_space()->alignment());
duke@435 886 }
duke@435 887
duke@435 888 void PSYoungGen::reset_after_change() {
duke@435 889 ShouldNotReachHere();
duke@435 890 }
duke@435 891
duke@435 892 void PSYoungGen::reset_survivors_after_shrink() {
duke@435 893 _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
duke@435 894 (HeapWord*)virtual_space()->high_boundary());
duke@435 895 PSScavenge::reference_processor()->set_span(_reserved);
duke@435 896
duke@435 897 MutableSpace* space_shrinking = NULL;
duke@435 898 if (from_space()->end() > to_space()->end()) {
duke@435 899 space_shrinking = from_space();
duke@435 900 } else {
duke@435 901 space_shrinking = to_space();
duke@435 902 }
duke@435 903
duke@435 904 HeapWord* new_end = (HeapWord*)virtual_space()->high();
duke@435 905 assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
duke@435 906 // Was there a shrink of the survivor space?
duke@435 907 if (new_end < space_shrinking->end()) {
duke@435 908 MemRegion mr(space_shrinking->bottom(), new_end);
jmasa@698 909 space_shrinking->initialize(mr,
jmasa@698 910 SpaceDecorator::DontClear,
jmasa@698 911 SpaceDecorator::Mangle);
duke@435 912 }
duke@435 913 }
duke@435 914
duke@435 915 // This method currently does not expect to expand into eden (i.e.,
duke@435 916 // the virtual space boundaries is expected to be consistent
duke@435 917 // with the eden boundaries..
duke@435 918 void PSYoungGen::post_resize() {
duke@435 919 assert_locked_or_safepoint(Heap_lock);
duke@435 920 assert((eden_space()->bottom() < to_space()->bottom()) &&
duke@435 921 (eden_space()->bottom() < from_space()->bottom()),
duke@435 922 "Eden is assumed to be below the survivor spaces");
duke@435 923
duke@435 924 MemRegion cmr((HeapWord*)virtual_space()->low(),
duke@435 925 (HeapWord*)virtual_space()->high());
duke@435 926 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 927 space_invariants();
duke@435 928 }
duke@435 929
duke@435 930
duke@435 931
duke@435 932 void PSYoungGen::update_counters() {
duke@435 933 if (UsePerfData) {
duke@435 934 _eden_counters->update_all();
duke@435 935 _from_counters->update_all();
duke@435 936 _to_counters->update_all();
duke@435 937 _gen_counters->update_all();
duke@435 938 }
duke@435 939 }
duke@435 940
brutisso@3711 941 void PSYoungGen::verify() {
brutisso@3711 942 eden_space()->verify();
brutisso@3711 943 from_space()->verify();
brutisso@3711 944 to_space()->verify();
duke@435 945 }
jmasa@698 946
jmasa@698 947 #ifndef PRODUCT
jmasa@698 948 void PSYoungGen::record_spaces_top() {
jmasa@698 949 assert(ZapUnusedHeapArea, "Not mangling unused space");
jmasa@698 950 eden_space()->set_top_for_allocations();
jmasa@698 951 from_space()->set_top_for_allocations();
jmasa@698 952 to_space()->set_top_for_allocations();
jmasa@698 953 }
jmasa@698 954 #endif

mercurial